
In a resonance column, first and second resonance are obtained at depths 22.7 cm and 70.2 cm. The third resonance will be obtained at a depth:
A) 117.7 cm
B) 92.9 cm
C) 115.5 cm
D) 113.5 cm
Answer
570k+ views
Hint
Here, we will use the condition of resonance that is when the frequency of waves in the air column becomes equal to the natural frequency of tuning fork, a loud sound is produced in the air column.
Complete step-by-step answer:
Here the depth of first and second are given so we will use the resonance condition. When the frequency of waves in the air column becomes equal to the natural frequency of the tuning fork, a loud sound is produced in the air column. It is the condition for resonance. It occurs only when the length of the air column is proportional to one-fourth of the wavelength of sound waves having frequency equal to frequency of tuning fork.
In resonance column, first resonance occurs at
⇒ ${l_1} + x = \dfrac{\lambda }{4}$…………………. (1)
Where, l1 is the first resonance depth
Second resonance occurs at
⇒ ${l_2} + x = \dfrac{{3\lambda }}{4}$………………. (2)
Where, l2 is the second resonance depth.
From equation (1) and (2) we get
⇒ ${l_2} + x = 3\left( {{l_1} + x} \right)$
⇒ $x = \dfrac{{3{l_1} - {l_2}}}{2}$
As it is given that $\begin{gathered}
{l_1} = 22.7cm \\
{l_2} = 70.2cm \\
\end{gathered} $
⇒ $x = \dfrac{{3 \times 22.7 - 70.2}}{2} = 1.05cm$
Now, for third resonance depth
⇒ ${l_3} + x = \dfrac{{5\lambda }}{4}$……………. (3)
⇒ ${l_3} = \dfrac{{5\lambda }}{4} - x$
On putting the value of λ from equation (1) to equation (3), we get
⇒ ${l_3} = 5\left( {{l_1} + x} \right) - x = 5{l_1} + 4x$
On putting the values of x and l1 in above equation, we get
⇒ ${l_3} = 5 \times 22.7 + 4 \times 1.05 = 117.7cm$
Hence, option A is correct.
Note
Here the conditions of first, second and third resonance depth conditions, which are obtained due to the production of standing waves.
Here, we will use the condition of resonance that is when the frequency of waves in the air column becomes equal to the natural frequency of tuning fork, a loud sound is produced in the air column.
Complete step-by-step answer:
Here the depth of first and second are given so we will use the resonance condition. When the frequency of waves in the air column becomes equal to the natural frequency of the tuning fork, a loud sound is produced in the air column. It is the condition for resonance. It occurs only when the length of the air column is proportional to one-fourth of the wavelength of sound waves having frequency equal to frequency of tuning fork.
In resonance column, first resonance occurs at
⇒ ${l_1} + x = \dfrac{\lambda }{4}$…………………. (1)
Where, l1 is the first resonance depth
Second resonance occurs at
⇒ ${l_2} + x = \dfrac{{3\lambda }}{4}$………………. (2)
Where, l2 is the second resonance depth.
From equation (1) and (2) we get
⇒ ${l_2} + x = 3\left( {{l_1} + x} \right)$
⇒ $x = \dfrac{{3{l_1} - {l_2}}}{2}$
As it is given that $\begin{gathered}
{l_1} = 22.7cm \\
{l_2} = 70.2cm \\
\end{gathered} $
⇒ $x = \dfrac{{3 \times 22.7 - 70.2}}{2} = 1.05cm$
Now, for third resonance depth
⇒ ${l_3} + x = \dfrac{{5\lambda }}{4}$……………. (3)
⇒ ${l_3} = \dfrac{{5\lambda }}{4} - x$
On putting the value of λ from equation (1) to equation (3), we get
⇒ ${l_3} = 5\left( {{l_1} + x} \right) - x = 5{l_1} + 4x$
On putting the values of x and l1 in above equation, we get
⇒ ${l_3} = 5 \times 22.7 + 4 \times 1.05 = 117.7cm$
Hence, option A is correct.
Note
Here the conditions of first, second and third resonance depth conditions, which are obtained due to the production of standing waves.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

