Answer
Verified
431.1k+ views
Hint: In order to show that the line segments AF and EC trisect the diagonal BD we use the Midpoint theorem and general properties of parallelogram.
Midpoint theorem states that the midpoint of a side in a parallelogram bisects it in two halves. Opposite sides of a parallelogram are parallel and equal in length.
Complete step-by-step answer:
Given that ABCD is a parallelogram.
Using the property of parallelogram, we say
AB || DC and AB = DC.
E is the midpoint of AB
${\text{AE = }}\dfrac{1}{2}{\text{AB - - - - - }}\left( 1 \right)$
Also F is the midpoint of CD
Therefore ${\text{CF = }}\dfrac{1}{2}{\text{CD}}$
${\text{CF = }}\dfrac{1}{2}{\text{AB }}\left( {\because {\text{CD = AB}}} \right){\text{ - - - - }}\left( 2 \right)$
From equation (1) and (2), we get
AE = CF
Also,
AE || CF (∵AB || DC)
Thus a pair of opposite sides of a quadrilateral AECF are parallel and equal.
Hence quadrilateral AECF is a parallelogram.
So, now we have
EC || AF
EQ || AP and QC || PF
In ∆BPA, E is the midpoint of BA and EQ || AP
Using mid-point theorem, we have
BQ || PQ ---- (3)
Similarly by taking ∆CQD, we can prove that
DP = QP ---- (4)
From (3) and (4), we get
BQ = QP = PD
Therefore, AF and CE trisect the diagonal BD.
Note: In order to solve this type of problems the key is to always remember that symmetry allows to reduce a theorem to a computation. Never try to solve a problem with a figure by solving directly without proof. In case of trisection, we have proved that all the three parts of the line are equal.
Midpoint theorem states that the midpoint of a side in a parallelogram bisects it in two halves. Opposite sides of a parallelogram are parallel and equal in length.
Complete step-by-step answer:
Given that ABCD is a parallelogram.
Using the property of parallelogram, we say
AB || DC and AB = DC.
E is the midpoint of AB
${\text{AE = }}\dfrac{1}{2}{\text{AB - - - - - }}\left( 1 \right)$
Also F is the midpoint of CD
Therefore ${\text{CF = }}\dfrac{1}{2}{\text{CD}}$
${\text{CF = }}\dfrac{1}{2}{\text{AB }}\left( {\because {\text{CD = AB}}} \right){\text{ - - - - }}\left( 2 \right)$
From equation (1) and (2), we get
AE = CF
Also,
AE || CF (∵AB || DC)
Thus a pair of opposite sides of a quadrilateral AECF are parallel and equal.
Hence quadrilateral AECF is a parallelogram.
So, now we have
EC || AF
EQ || AP and QC || PF
In ∆BPA, E is the midpoint of BA and EQ || AP
Using mid-point theorem, we have
BQ || PQ ---- (3)
Similarly by taking ∆CQD, we can prove that
DP = QP ---- (4)
From (3) and (4), we get
BQ = QP = PD
Therefore, AF and CE trisect the diagonal BD.
Note: In order to solve this type of problems the key is to always remember that symmetry allows to reduce a theorem to a computation. Never try to solve a problem with a figure by solving directly without proof. In case of trisection, we have proved that all the three parts of the line are equal.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Onam is the main festival of which state A Karnataka class 7 social science CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Who was the founder of muslim league A Mohmmad ali class 10 social science CBSE
Select the word that is correctly spelled a Twelveth class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers