
In a given figure equilateral triangles are drawn on the sides of a right triangle. Show that the area of the triangle on the hypotenuse is equal to the sum of the areas of triangles on the other two sides.
Answer
616.2k+ views
Hint: In this question it is given that 3 equilateral triangles are drawn on sides of the right triangle. Use theorem; ratio of areas of similar triangles is proportional to the square of ratio of their corresponding sides.
Complete step-by-step answer:
Given $\vartriangle PAB,\vartriangle RAC{\text{ and }}\vartriangle BQC{\text{ }}$are equilateral triangles.
To Prove: $Ar(\vartriangle PAB) + Ar(\vartriangle QBC) = Ar(\vartriangle RAC)$
Proof:
Since
$
\vartriangle PAB,\vartriangle RAC{\text{ and }}\vartriangle BQC{\text{ are equilateral }} \\
{\text{Hence}} \\
\vartriangle {\text{PAB}} \sim \vartriangle RAC{\text{ and }}\vartriangle BQC \sim \vartriangle RAC{\text{ [}}\because {\text{they are equiangular]}} \\
$
From
$
\vartriangle PAB \sim \vartriangle RAC \\
\dfrac{{Ar(\vartriangle PAB)}}{{Ar(\vartriangle RAC)}} = {\left( {\dfrac{{AB}}{{AC}}} \right)^2}............................(1) \\
$
From
$
\vartriangle BQC \sim \vartriangle RAC \\
\dfrac{{Ar(\vartriangle BQC)}}{{Ar(\vartriangle RAC)}} = {\left( {\dfrac{{BC}}{{AC}}} \right)^2}..............................(2) \\
$
Adding (1) and (2) we get,
$
\dfrac{{Ar(\vartriangle PAB)}}{{Ar(\vartriangle RAC)}} + \dfrac{{Ar(\vartriangle BQC)}}{{Ar(\vartriangle RAC)}} = \dfrac{{A{B^2}}}{{A{C^2}}} + \dfrac{{B{C^2}}}{{A{C^2}}} \\
\dfrac{{Ar(\vartriangle PAB) + Ar(\vartriangle BQC)}}{{Ar(\vartriangle RAC)}} = \dfrac{{A{B^2} + B{C^2}}}{{A{C^2}}} \\
{\text{Using pythagoras theorem to right }}\vartriangle {\text{ABC}} \\
{\text{A}}{{\text{C}}^2} = A{B^2} + B{C^2} \\
\dfrac{{Ar(\vartriangle PAB) + Ar(\vartriangle BQC)}}{{Ar(\vartriangle RAC)}} = \dfrac{{A{C^2}}}{{A{C^2}}} = 1 \\
Ar(\vartriangle PAB) + Ar(\vartriangle BQC) = Ar(\vartriangle RAC) \\
$
Hence Proved.
Note: An equilateral triangle is a triangle in which all three sides are equal. Two triangles are said to be similar if their corresponding angles are congruent and the corresponding sides are in proportion. In other words, similar triangles are the same shape, but not necessarily the same size. Students must remember the criterions for the similarity of triangles
Complete step-by-step answer:
Given $\vartriangle PAB,\vartriangle RAC{\text{ and }}\vartriangle BQC{\text{ }}$are equilateral triangles.
To Prove: $Ar(\vartriangle PAB) + Ar(\vartriangle QBC) = Ar(\vartriangle RAC)$
Proof:
Since
$
\vartriangle PAB,\vartriangle RAC{\text{ and }}\vartriangle BQC{\text{ are equilateral }} \\
{\text{Hence}} \\
\vartriangle {\text{PAB}} \sim \vartriangle RAC{\text{ and }}\vartriangle BQC \sim \vartriangle RAC{\text{ [}}\because {\text{they are equiangular]}} \\
$
From
$
\vartriangle PAB \sim \vartriangle RAC \\
\dfrac{{Ar(\vartriangle PAB)}}{{Ar(\vartriangle RAC)}} = {\left( {\dfrac{{AB}}{{AC}}} \right)^2}............................(1) \\
$
From
$
\vartriangle BQC \sim \vartriangle RAC \\
\dfrac{{Ar(\vartriangle BQC)}}{{Ar(\vartriangle RAC)}} = {\left( {\dfrac{{BC}}{{AC}}} \right)^2}..............................(2) \\
$
Adding (1) and (2) we get,
$
\dfrac{{Ar(\vartriangle PAB)}}{{Ar(\vartriangle RAC)}} + \dfrac{{Ar(\vartriangle BQC)}}{{Ar(\vartriangle RAC)}} = \dfrac{{A{B^2}}}{{A{C^2}}} + \dfrac{{B{C^2}}}{{A{C^2}}} \\
\dfrac{{Ar(\vartriangle PAB) + Ar(\vartriangle BQC)}}{{Ar(\vartriangle RAC)}} = \dfrac{{A{B^2} + B{C^2}}}{{A{C^2}}} \\
{\text{Using pythagoras theorem to right }}\vartriangle {\text{ABC}} \\
{\text{A}}{{\text{C}}^2} = A{B^2} + B{C^2} \\
\dfrac{{Ar(\vartriangle PAB) + Ar(\vartriangle BQC)}}{{Ar(\vartriangle RAC)}} = \dfrac{{A{C^2}}}{{A{C^2}}} = 1 \\
Ar(\vartriangle PAB) + Ar(\vartriangle BQC) = Ar(\vartriangle RAC) \\
$
Hence Proved.
Note: An equilateral triangle is a triangle in which all three sides are equal. Two triangles are said to be similar if their corresponding angles are congruent and the corresponding sides are in proportion. In other words, similar triangles are the same shape, but not necessarily the same size. Students must remember the criterions for the similarity of triangles
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

