
In a $\Delta ABC$, prove that ${{\cos }^{2}}A+{{\cos }^{2}}\left( A+\dfrac{\pi }{3} \right)+{{\cos }^{2}}\left( A-\dfrac{\pi }{3} \right)=\dfrac{3}{2}$.
Answer
614.4k+ views
Hint: For solving this question first we will apply the trigonometric formulas for sum and difference of two angles and some standard trigonometric ratios like $\cos \dfrac{\pi }{3}=\dfrac{1}{2}$ and $\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$. After that, we will apply the whole square formula to simplify the term on the left-hand side and prove it equal to the term on the right-hand side.
Complete step-by-step answer:
Given:
For a $\Delta ABC$ we have to prove the following equation:
${{\cos }^{2}}A+{{\cos }^{2}}\left( A+\dfrac{\pi }{3} \right)+{{\cos }^{2}}\left( A-\dfrac{\pi }{3} \right)=\dfrac{3}{2}$
Now, before we proceed we should know the following seven formulas:
$\begin{align}
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1................................\left( 1 \right) \\
& \cos \left( A+B \right)=\cos A\cos B-\sin A\sin B..................\left( 2 \right) \\
& \cos \left( A-B \right)=\cos A\cos B+\sin A\sin B...................\left( 3 \right) \\
& \cos \dfrac{\pi }{3}=\dfrac{1}{2}..............................................................\left( 4 \right) \\
& \sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}............................................................\left( 5 \right)
\\
& {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab..........................................\left( 6 \right) \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab...........................................\left( 7 \right) \\
\end{align}$
Now, we will be using the above seven formulas to simplify the term on the left-hand side to prove the desired result.
Now, L.H.S is equal to ${{\cos }^{2}}A+{{\cos }^{2}}\left( A+\dfrac{\pi }{3} \right)+{{\cos }^{2}}\left( A-\dfrac{\pi }{3} \right)$ so, using the formula from the equation (2) and equation (3). Then,
$\begin{align}
& {{\cos }^{2}}A+{{\cos }^{2}}\left( A+\dfrac{\pi }{3} \right)+{{\cos }^{2}}\left( A-\dfrac{\pi }{3} \right) \\
& \Rightarrow {{\cos }^{2}}A+{{\left( \cos A\cos \dfrac{\pi }{3}-\sin A\sin \dfrac{\pi }{3} \right)}^{2}}+{{\left( \cos A\cos \dfrac{\pi }{3}+\sin A\sin \dfrac{\pi }{3} \right)}^{2}} \\
\end{align}$
Now, substituting the value of $\cos \dfrac{\pi }{3}=\dfrac{1}{2}$ form equation (4) and $\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$ from equation (5) in the above equation. Then,
$\begin{align}
& {{\cos }^{2}}A+{{\left( \cos A\cos \dfrac{\pi }{3}-\sin A\sin \dfrac{\pi }{3} \right)}^{2}}+{{\left( \cos A\cos \dfrac{\pi }{3}+\sin A\sin \dfrac{\pi }{3} \right)}^{2}} \\
& \Rightarrow {{\cos }^{2}}A+{{\left( \dfrac{\cos A}{2}-\dfrac{\sqrt{3}\sin A}{2} \right)}^{2}}+{{\left( \dfrac{\cos A}{2}+\dfrac{\sqrt{3}\sin A}{2} \right)}^{2}} \\
\end{align}$
Now, using the formula from the equation (6) and equation (7) in the above equation. Then,
$\begin{align}
& {{\cos }^{2}}A+{{\left( \dfrac{\cos A}{2}-\dfrac{\sqrt{3}\sin A}{2} \right)}^{2}}+{{\left( \dfrac{\cos A}{2}+\dfrac{\sqrt{3}\sin A}{2} \right)}^{2}} \\
& \Rightarrow {{\cos }^{2}}A+\dfrac{{{\cos }^{2}}A}{4}+\dfrac{3{{\sin }^{2}}A}{4}-2\times \dfrac{\cos A}{2}\times \dfrac{\sqrt{3}\sin A}{2}+\dfrac{{{\cos }^{2}}A}{4}+\dfrac{3{{\sin }^{2}}A}{4}+2\times \dfrac{\cos A}{2}\times \dfrac{\sqrt{3}\sin A}{2} \\
& \Rightarrow \dfrac{3{{\cos }^{2}}A}{2}+\dfrac{3{{\sin }^{2}}A}{2} \\
& \Rightarrow \dfrac{3}{2}\left( {{\cos }^{2}}A+{{\sin }^{2}}A \right) \\
\end{align}$
Now, substituting the value of ${{\cos }^{2}}A+{{\sin }^{2}}A=1$ form equation (1) in the above equation. Then,
$\begin{align}
& \dfrac{3}{2}\left( {{\cos }^{2}}A+{{\sin }^{2}}A \right) \\
& \Rightarrow \dfrac{3}{2} \\
\end{align}$
Now, from the above result, we can say that ${{\cos }^{2}}A+{{\cos }^{2}}\left( A+\dfrac{\pi }{3} \right)+{{\cos }^{2}}\left( A-\dfrac{\pi }{3} \right)=\dfrac{3}{2}$ .
Thus, $L.H.S=R.H.S$.
Hence Proved.
Note: Here, the student should first understand what we have to prove in the question and then proceed in a stepwise manner while solving. For making the simplification process smooth, we should also try to make use of trigonometric ratios like $\cos \dfrac{\pi }{3}=\dfrac{1}{2}$ and $\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$ for making equations that will help us further in the solution. Moreover, the formulas like $\cos \left( A+B \right)$ and $\cos \left( A-B \right)$ should be applied correctly with proper signs, values and avoid making calculation mistakes while solving the problem.
Complete step-by-step answer:
Given:
For a $\Delta ABC$ we have to prove the following equation:
${{\cos }^{2}}A+{{\cos }^{2}}\left( A+\dfrac{\pi }{3} \right)+{{\cos }^{2}}\left( A-\dfrac{\pi }{3} \right)=\dfrac{3}{2}$
Now, before we proceed we should know the following seven formulas:
$\begin{align}
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1................................\left( 1 \right) \\
& \cos \left( A+B \right)=\cos A\cos B-\sin A\sin B..................\left( 2 \right) \\
& \cos \left( A-B \right)=\cos A\cos B+\sin A\sin B...................\left( 3 \right) \\
& \cos \dfrac{\pi }{3}=\dfrac{1}{2}..............................................................\left( 4 \right) \\
& \sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}............................................................\left( 5 \right)
\\
& {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab..........................................\left( 6 \right) \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab...........................................\left( 7 \right) \\
\end{align}$
Now, we will be using the above seven formulas to simplify the term on the left-hand side to prove the desired result.
Now, L.H.S is equal to ${{\cos }^{2}}A+{{\cos }^{2}}\left( A+\dfrac{\pi }{3} \right)+{{\cos }^{2}}\left( A-\dfrac{\pi }{3} \right)$ so, using the formula from the equation (2) and equation (3). Then,
$\begin{align}
& {{\cos }^{2}}A+{{\cos }^{2}}\left( A+\dfrac{\pi }{3} \right)+{{\cos }^{2}}\left( A-\dfrac{\pi }{3} \right) \\
& \Rightarrow {{\cos }^{2}}A+{{\left( \cos A\cos \dfrac{\pi }{3}-\sin A\sin \dfrac{\pi }{3} \right)}^{2}}+{{\left( \cos A\cos \dfrac{\pi }{3}+\sin A\sin \dfrac{\pi }{3} \right)}^{2}} \\
\end{align}$
Now, substituting the value of $\cos \dfrac{\pi }{3}=\dfrac{1}{2}$ form equation (4) and $\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$ from equation (5) in the above equation. Then,
$\begin{align}
& {{\cos }^{2}}A+{{\left( \cos A\cos \dfrac{\pi }{3}-\sin A\sin \dfrac{\pi }{3} \right)}^{2}}+{{\left( \cos A\cos \dfrac{\pi }{3}+\sin A\sin \dfrac{\pi }{3} \right)}^{2}} \\
& \Rightarrow {{\cos }^{2}}A+{{\left( \dfrac{\cos A}{2}-\dfrac{\sqrt{3}\sin A}{2} \right)}^{2}}+{{\left( \dfrac{\cos A}{2}+\dfrac{\sqrt{3}\sin A}{2} \right)}^{2}} \\
\end{align}$
Now, using the formula from the equation (6) and equation (7) in the above equation. Then,
$\begin{align}
& {{\cos }^{2}}A+{{\left( \dfrac{\cos A}{2}-\dfrac{\sqrt{3}\sin A}{2} \right)}^{2}}+{{\left( \dfrac{\cos A}{2}+\dfrac{\sqrt{3}\sin A}{2} \right)}^{2}} \\
& \Rightarrow {{\cos }^{2}}A+\dfrac{{{\cos }^{2}}A}{4}+\dfrac{3{{\sin }^{2}}A}{4}-2\times \dfrac{\cos A}{2}\times \dfrac{\sqrt{3}\sin A}{2}+\dfrac{{{\cos }^{2}}A}{4}+\dfrac{3{{\sin }^{2}}A}{4}+2\times \dfrac{\cos A}{2}\times \dfrac{\sqrt{3}\sin A}{2} \\
& \Rightarrow \dfrac{3{{\cos }^{2}}A}{2}+\dfrac{3{{\sin }^{2}}A}{2} \\
& \Rightarrow \dfrac{3}{2}\left( {{\cos }^{2}}A+{{\sin }^{2}}A \right) \\
\end{align}$
Now, substituting the value of ${{\cos }^{2}}A+{{\sin }^{2}}A=1$ form equation (1) in the above equation. Then,
$\begin{align}
& \dfrac{3}{2}\left( {{\cos }^{2}}A+{{\sin }^{2}}A \right) \\
& \Rightarrow \dfrac{3}{2} \\
\end{align}$
Now, from the above result, we can say that ${{\cos }^{2}}A+{{\cos }^{2}}\left( A+\dfrac{\pi }{3} \right)+{{\cos }^{2}}\left( A-\dfrac{\pi }{3} \right)=\dfrac{3}{2}$ .
Thus, $L.H.S=R.H.S$.
Hence Proved.
Note: Here, the student should first understand what we have to prove in the question and then proceed in a stepwise manner while solving. For making the simplification process smooth, we should also try to make use of trigonometric ratios like $\cos \dfrac{\pi }{3}=\dfrac{1}{2}$ and $\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$ for making equations that will help us further in the solution. Moreover, the formulas like $\cos \left( A+B \right)$ and $\cos \left( A-B \right)$ should be applied correctly with proper signs, values and avoid making calculation mistakes while solving the problem.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

