In a circle of radius 21 cm, an arc subtends an angle of ${60^0}$at the center. Find the length of the arc and area of the sector formed by the arc. (Use$\pi = \dfrac{{22}}{7}$)
Last updated date: 26th Mar 2023
•
Total views: 305.7k
•
Views today: 6.82k
Answer
305.7k+ views
Hint: Here we use the formula of length of arc i.e. $\dfrac{\theta }{{{{360}^0}}} \times 2\pi r$ and area of the sector i.e. $\dfrac{\theta }{{{{360}^0}}} \times \pi {r^2}$. just put the value of radius and angle to get the answer.
Complete step-by-step answer:
Given radius of circle, r =21 cm
Arc subtends an angle of ${60^0}$ at center.
We know that for finding the length of arc the formula we use is $\dfrac{\theta }{{{{360}^0}}} \times 2\pi r$.
So the length of an arc AB\[ = \dfrac{\theta }{{{{360}^0}}} \times 2\pi r = \dfrac{{{{60}^0}}}{{{{360}^0}}} \times 2 \times \dfrac{{22}}{7} \times 21 = \dfrac{1}{6} \times 2 \times 22 \times 3 = 22cm\]
And for the area of sector the formula we use is$\dfrac{\theta }{{{{360}^0}}} \times \pi {r^2}$.
So the area of sector OAB$ = \dfrac{\theta }{{{{360}^0}}} \times \pi {r^2} = \dfrac{{60}}{{360}} \times \dfrac{{22}}{7} \times {(22)^2} = 11 \times 3 \times 7 = 231c{m^2}$
Therefore the length of arc is 22cm and the area of the sector is $231c{m^2}$
Note: Whenever we face such a type of question we simply use the formula to get the answer. And if you forgot the formula you can apply a unitary method for solving the question. As you know the total angle at the center of the circle is ${360^0}$. And for the complete angle, we know that the total length of the arc of the circle is$ 2\pi r$ also known as circumference of circle. Then for angle $\theta $ we can simply apply a unitary method. Similarly we can also find the area of the sector.

Complete step-by-step answer:
Given radius of circle, r =21 cm
Arc subtends an angle of ${60^0}$ at center.
We know that for finding the length of arc the formula we use is $\dfrac{\theta }{{{{360}^0}}} \times 2\pi r$.
So the length of an arc AB\[ = \dfrac{\theta }{{{{360}^0}}} \times 2\pi r = \dfrac{{{{60}^0}}}{{{{360}^0}}} \times 2 \times \dfrac{{22}}{7} \times 21 = \dfrac{1}{6} \times 2 \times 22 \times 3 = 22cm\]
And for the area of sector the formula we use is$\dfrac{\theta }{{{{360}^0}}} \times \pi {r^2}$.
So the area of sector OAB$ = \dfrac{\theta }{{{{360}^0}}} \times \pi {r^2} = \dfrac{{60}}{{360}} \times \dfrac{{22}}{7} \times {(22)^2} = 11 \times 3 \times 7 = 231c{m^2}$
Therefore the length of arc is 22cm and the area of the sector is $231c{m^2}$
Note: Whenever we face such a type of question we simply use the formula to get the answer. And if you forgot the formula you can apply a unitary method for solving the question. As you know the total angle at the center of the circle is ${360^0}$. And for the complete angle, we know that the total length of the arc of the circle is$ 2\pi r$ also known as circumference of circle. Then for angle $\theta $ we can simply apply a unitary method. Similarly we can also find the area of the sector.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
