Answer
Verified
490.8k+ views
Hint: Here we use the formula of length of arc i.e. $\dfrac{\theta }{{{{360}^0}}} \times 2\pi r$ and area of the sector i.e. $\dfrac{\theta }{{{{360}^0}}} \times \pi {r^2}$. just put the value of radius and angle to get the answer.
Complete step-by-step answer:
Given radius of circle, r =21 cm
Arc subtends an angle of ${60^0}$ at center.
We know that for finding the length of arc the formula we use is $\dfrac{\theta }{{{{360}^0}}} \times 2\pi r$.
So the length of an arc AB\[ = \dfrac{\theta }{{{{360}^0}}} \times 2\pi r = \dfrac{{{{60}^0}}}{{{{360}^0}}} \times 2 \times \dfrac{{22}}{7} \times 21 = \dfrac{1}{6} \times 2 \times 22 \times 3 = 22cm\]
And for the area of sector the formula we use is$\dfrac{\theta }{{{{360}^0}}} \times \pi {r^2}$.
So the area of sector OAB$ = \dfrac{\theta }{{{{360}^0}}} \times \pi {r^2} = \dfrac{{60}}{{360}} \times \dfrac{{22}}{7} \times {(22)^2} = 11 \times 3 \times 7 = 231c{m^2}$
Therefore the length of arc is 22cm and the area of the sector is $231c{m^2}$
Note: Whenever we face such a type of question we simply use the formula to get the answer. And if you forgot the formula you can apply a unitary method for solving the question. As you know the total angle at the center of the circle is ${360^0}$. And for the complete angle, we know that the total length of the arc of the circle is$ 2\pi r$ also known as circumference of circle. Then for angle $\theta $ we can simply apply a unitary method. Similarly we can also find the area of the sector.
Complete step-by-step answer:
Given radius of circle, r =21 cm
Arc subtends an angle of ${60^0}$ at center.
We know that for finding the length of arc the formula we use is $\dfrac{\theta }{{{{360}^0}}} \times 2\pi r$.
So the length of an arc AB\[ = \dfrac{\theta }{{{{360}^0}}} \times 2\pi r = \dfrac{{{{60}^0}}}{{{{360}^0}}} \times 2 \times \dfrac{{22}}{7} \times 21 = \dfrac{1}{6} \times 2 \times 22 \times 3 = 22cm\]
And for the area of sector the formula we use is$\dfrac{\theta }{{{{360}^0}}} \times \pi {r^2}$.
So the area of sector OAB$ = \dfrac{\theta }{{{{360}^0}}} \times \pi {r^2} = \dfrac{{60}}{{360}} \times \dfrac{{22}}{7} \times {(22)^2} = 11 \times 3 \times 7 = 231c{m^2}$
Therefore the length of arc is 22cm and the area of the sector is $231c{m^2}$
Note: Whenever we face such a type of question we simply use the formula to get the answer. And if you forgot the formula you can apply a unitary method for solving the question. As you know the total angle at the center of the circle is ${360^0}$. And for the complete angle, we know that the total length of the arc of the circle is$ 2\pi r$ also known as circumference of circle. Then for angle $\theta $ we can simply apply a unitary method. Similarly we can also find the area of the sector.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE