
If$\tan \theta =\dfrac{a}{b}$, show that: $\dfrac{a\sin \theta -b\cos \theta }{a\sin \theta +b\cos \theta }=\dfrac{\left( {{a}^{2}}-{{b}^{2}} \right)}{\left( {{a}^{2}}+{{b}^{2}} \right)}$\[\]
Answer
483.6k+ views
Hint: We will try to convert sine and cosine of angle $\theta $ present in the numerator at the left hand side of the equation in terms of tangent of the angle $\theta $ using the formula ${{\sec }^{2}}\theta -1={{\tan }^{2}}\theta $ so that we can use the give value $\tan \theta =\dfrac{a}{b}$. We replace $\sin \theta ,\cos \theta $ with the obtained expressions in $a,b$ at the left hand side and simplify till we arrive at the right hand side. \[\]
Complete step-by-step answer:
Now, from the given question we have
\[\tan \theta =\dfrac{a}{b}\ \ \ \ \ ...(a)\]
Now, by using the trigonometric identity which gives the relation between the function that are mentioned in the hint, we get the following
\[\Rightarrow \tan \theta =\dfrac{\sin \theta }{\cos \theta }\]
Now, this can also be written as the following using the other relations given in the hint as follows
\[\begin{align}
& \Rightarrow {{\sec }^{2}}\theta -1={{\tan }^{2}}\theta \\
& \Rightarrow {{\left( \dfrac{1}{\cos \theta } \right)}^{2}}-1={{\tan }^{2}}\theta \\
& \Rightarrow {{\left( \dfrac{1}{\cos \theta } \right)}^{2}}={{\tan }^{2}}\theta +1 \\
\end{align}\]
Let us now substitute the value from the question and as well as from equation (a) in this
\[\begin{align}
& \Rightarrow {{\left( \dfrac{1}{\cos \theta } \right)}^{2}}={{\left( \dfrac{a}{b} \right)}^{2}}+1 \\
& \Rightarrow {{\left( \dfrac{1}{\cos \theta } \right)}^{2}}=\left( \dfrac{{{a}^{2}}}{{{b}^{2}}} \right)+1 \\
& \Rightarrow {{\left( \dfrac{1}{\cos \theta } \right)}^{2}}=\dfrac{{{a}^{2}}+{{b}^{2}}}{{{b}^{2}}} \\
\end{align}\]
Now, this can be further written as
\[\begin{align}
& \Rightarrow \left( \dfrac{1}{\cos \theta } \right)=\sqrt{\dfrac{{{a}^{2}}+{{b}^{2}}}{{{b}^{2}}}} \\
& \Rightarrow \cos \theta =\sqrt{\dfrac{{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}} \\
\end{align}\]
Now, using the relation between the sin and cos function, we have
\[\Rightarrow {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]
Now, this can be used to get the expression which can be written as
\[\begin{align}
& \Rightarrow {{\left( \sqrt{\dfrac{{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}} \right)}^{2}}+{{\sin }^{2}}\theta =1 \\
& \Rightarrow \dfrac{{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}+{{\sin }^{2}}\theta =1 \\
& \Rightarrow {{\sin }^{2}}\theta =1-\dfrac{{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}} \\
& \Rightarrow {{\sin }^{2}}\theta =\dfrac{{{a}^{2}}}{{{a}^{2}}+{{b}^{2}}} \\
& \Rightarrow \sin \theta =\sqrt{\dfrac{{{a}^{2}}}{{{a}^{2}}+{{b}^{2}}}} \\
\end{align}\]
Now, from the given expression in the question, on substituting the values, we have
\[\dfrac{a\sin \theta -b\cos \theta }{a\sin \theta +b\cos \theta }=\dfrac{\left( {{a}^{2}}-{{b}^{2}} \right)}{\left( {{a}^{2}}+{{b}^{2}} \right)}\]
Let us first consider the left hand side and calculate its value
\[\begin{align}
& L.H.S=\dfrac{a\sin \theta -b\cos \theta }{a\sin \theta +b\cos \theta } \\
& L.H.S=\dfrac{a\times \sqrt{\dfrac{{{a}^{2}}}{{{a}^{2}}+{{b}^{2}}}}-b\times \sqrt{\dfrac{{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}}}{a\times \sqrt{\dfrac{{{a}^{2}}}{{{a}^{2}}+{{b}^{2}}}}+b\times \sqrt{\dfrac{{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}}} \\
& L.H.S=\dfrac{{{a}^{2}}\sqrt{\dfrac{1}{a+b}}-{{b}^{2}}\sqrt{\dfrac{1}{a+b}}}{{{a}^{2}}\sqrt{\dfrac{1}{a+b}}+{{b}^{2}}\sqrt{\dfrac{1}{a+b}}} \\
& L.H.S=\dfrac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}} \\
\end{align}\]
Thus, the value of right hand side is equal to left hand side
Hence, it is verified that,
\[\dfrac{a\sin \theta -b\cos \theta }{a\sin \theta +b\cos \theta }=\dfrac{\left( {{a}^{2}}-{{b}^{2}} \right)}{\left( {{a}^{2}}+{{b}^{2}} \right)}\]
Note: We note that the angles of the variables at the denominator at any expression cannot be zero, so we have $b\ne 0$. We also note that for $\tan \theta $ to exist $\theta $ cannot be $\dfrac{{\left( {2n + 1} \right)}}{2}\pi $ where $n$ is any integer. We can alternatively solve by dividing $\cos \theta $ at the denominator and numerator at the left hand side expression and then putting $\tan \theta =\dfrac{a}{b}$.
Complete step-by-step answer:
Now, from the given question we have
\[\tan \theta =\dfrac{a}{b}\ \ \ \ \ ...(a)\]
Now, by using the trigonometric identity which gives the relation between the function that are mentioned in the hint, we get the following
\[\Rightarrow \tan \theta =\dfrac{\sin \theta }{\cos \theta }\]
Now, this can also be written as the following using the other relations given in the hint as follows
\[\begin{align}
& \Rightarrow {{\sec }^{2}}\theta -1={{\tan }^{2}}\theta \\
& \Rightarrow {{\left( \dfrac{1}{\cos \theta } \right)}^{2}}-1={{\tan }^{2}}\theta \\
& \Rightarrow {{\left( \dfrac{1}{\cos \theta } \right)}^{2}}={{\tan }^{2}}\theta +1 \\
\end{align}\]
Let us now substitute the value from the question and as well as from equation (a) in this
\[\begin{align}
& \Rightarrow {{\left( \dfrac{1}{\cos \theta } \right)}^{2}}={{\left( \dfrac{a}{b} \right)}^{2}}+1 \\
& \Rightarrow {{\left( \dfrac{1}{\cos \theta } \right)}^{2}}=\left( \dfrac{{{a}^{2}}}{{{b}^{2}}} \right)+1 \\
& \Rightarrow {{\left( \dfrac{1}{\cos \theta } \right)}^{2}}=\dfrac{{{a}^{2}}+{{b}^{2}}}{{{b}^{2}}} \\
\end{align}\]
Now, this can be further written as
\[\begin{align}
& \Rightarrow \left( \dfrac{1}{\cos \theta } \right)=\sqrt{\dfrac{{{a}^{2}}+{{b}^{2}}}{{{b}^{2}}}} \\
& \Rightarrow \cos \theta =\sqrt{\dfrac{{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}} \\
\end{align}\]
Now, using the relation between the sin and cos function, we have
\[\Rightarrow {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]
Now, this can be used to get the expression which can be written as
\[\begin{align}
& \Rightarrow {{\left( \sqrt{\dfrac{{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}} \right)}^{2}}+{{\sin }^{2}}\theta =1 \\
& \Rightarrow \dfrac{{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}+{{\sin }^{2}}\theta =1 \\
& \Rightarrow {{\sin }^{2}}\theta =1-\dfrac{{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}} \\
& \Rightarrow {{\sin }^{2}}\theta =\dfrac{{{a}^{2}}}{{{a}^{2}}+{{b}^{2}}} \\
& \Rightarrow \sin \theta =\sqrt{\dfrac{{{a}^{2}}}{{{a}^{2}}+{{b}^{2}}}} \\
\end{align}\]
Now, from the given expression in the question, on substituting the values, we have
\[\dfrac{a\sin \theta -b\cos \theta }{a\sin \theta +b\cos \theta }=\dfrac{\left( {{a}^{2}}-{{b}^{2}} \right)}{\left( {{a}^{2}}+{{b}^{2}} \right)}\]
Let us first consider the left hand side and calculate its value
\[\begin{align}
& L.H.S=\dfrac{a\sin \theta -b\cos \theta }{a\sin \theta +b\cos \theta } \\
& L.H.S=\dfrac{a\times \sqrt{\dfrac{{{a}^{2}}}{{{a}^{2}}+{{b}^{2}}}}-b\times \sqrt{\dfrac{{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}}}{a\times \sqrt{\dfrac{{{a}^{2}}}{{{a}^{2}}+{{b}^{2}}}}+b\times \sqrt{\dfrac{{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}}} \\
& L.H.S=\dfrac{{{a}^{2}}\sqrt{\dfrac{1}{a+b}}-{{b}^{2}}\sqrt{\dfrac{1}{a+b}}}{{{a}^{2}}\sqrt{\dfrac{1}{a+b}}+{{b}^{2}}\sqrt{\dfrac{1}{a+b}}} \\
& L.H.S=\dfrac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}} \\
\end{align}\]
Thus, the value of right hand side is equal to left hand side
Hence, it is verified that,
\[\dfrac{a\sin \theta -b\cos \theta }{a\sin \theta +b\cos \theta }=\dfrac{\left( {{a}^{2}}-{{b}^{2}} \right)}{\left( {{a}^{2}}+{{b}^{2}} \right)}\]
Note: We note that the angles of the variables at the denominator at any expression cannot be zero, so we have $b\ne 0$. We also note that for $\tan \theta $ to exist $\theta $ cannot be $\dfrac{{\left( {2n + 1} \right)}}{2}\pi $ where $n$ is any integer. We can alternatively solve by dividing $\cos \theta $ at the denominator and numerator at the left hand side expression and then putting $\tan \theta =\dfrac{a}{b}$.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
