
If ${{z}_{r}}=\cos \left( \dfrac{\pi }{{{3}^{r}}} \right)$ $+i\sin \left( \dfrac{\pi }{{{3}^{r}}} \right)$ ,r=$1,2,3,...$ then ${{z}_{1}}.{{z}_{2}}.{{z}_{3}}...\infty =$
A.$i$
B.$-i$
C.$1$
D.$-1$
Answer
575.7k+ views
Hint: We can use the Euler’s formula ${{e}^{i\theta }}=\cos \theta +i\sin \theta $ to find value of ${{z}_{1}},{{z}_{2}},..{{z}_{n}}$. Then put the values and use formula of infinite G.P.- S=$\dfrac{a}{1-r}$ where ‘a’ is the first term and r is the common ratio and $\left| \text{r} \right|<1$
Complete step-by-step answer:
Given, ${{z}_{r}}=\cos \left( \dfrac{\pi }{{{3}^{r}}} \right)$ $+i\sin \left( \dfrac{\pi }{{{3}^{r}}} \right)$-- (i)
Where r=$1,2,3,...$
Then we have to find the value of ${{z}_{1}}.{{z}_{2}}.{{z}_{3}}...\infty $
We know that Euler’s formula is-
$\Rightarrow {{e}^{i\theta }}=\cos \theta +i\sin \theta $
On putting the value of $\theta =\dfrac{\pi }{{{3}^{r}}}$ , we get
$\Rightarrow {{e}^{i\dfrac{\pi }{{{3}^{\text{r}}}}}}=\cos \dfrac{\pi }{{{3}^{r}}}+i\sin \dfrac{\pi }{{{3}^{r}}}$ --- (ii)
From eq. (i) and (ii), we get-
$\Rightarrow {{z}_{\text{r}}}={{e}^{i\dfrac{\pi }{{{3}^{\text{r}}}}}}$-- (ii)
Now on putting the value of r=$1,2,3,...$, we get-
$\Rightarrow {{z}_{1}}={{e}^{i\dfrac{\pi }{{{3}^{1}}}}}$
$\Rightarrow {{z}_{2}}={{e}^{i\dfrac{\pi }{{{3}^{2}}}}}$
- - - - - -
$\Rightarrow {{z}_{n}}={{e}^{i\dfrac{\pi }{{{3}^{n}}}}}$
Then we can write
${{z}_{1}}.{{z}_{2}}.{{z}_{3}}...\infty =$${{e}^{i\dfrac{\pi }{{{3}^{1}}}}}.{{e}^{i\dfrac{\pi }{{{3}^{2}}}}}.{{e}^{i\dfrac{\pi }{{{3}^{3}}}}}...\infty $
Here the base of the multiplication is identical or same so the raised powers are added.
So the eq. becomes-
$\Rightarrow {{z}_{1}}.{{z}_{2}}.{{z}_{3}}...\infty ={{e}^{i\dfrac{\pi }{3}+i\dfrac{\pi }{{{3}^{2}}}+i\dfrac{\pi }{{{3}^{3}}}+...\infty }}$
On taking iota common we get,
$\Rightarrow {{z}_{1}}.{{z}_{2}}.{{z}_{3}}...\infty ={{e}^{i\left( \dfrac{\pi }{3}+\dfrac{\pi }{{{3}^{2}}}+\dfrac{\pi }{{{3}^{3}}}+...\infty \right)}}$
Here the raised power of e is in infinite G.P. so we can use the following formula to the sum of the terms-
$\Rightarrow $ S=$\dfrac{a}{1-r}$ where ‘a’ is the first term and r is the common ratio and $\left| \text{r} \right|<1$
Here the first term a=$\dfrac{\pi }{3}$ and common ratio is=$\dfrac{1}{3}$
On putting these values in the formula we get,
$\Rightarrow S=\dfrac{\dfrac{\pi }{3}}{1-\dfrac{1}{3}}$
On solving we get,
$\Rightarrow S=\dfrac{\dfrac{\pi }{3}}{\dfrac{3-1}{3}}=\dfrac{\pi }{2}$
On putting this value in the equation we get,
$\Rightarrow {{z}_{1}}.{{z}_{2}}.{{z}_{3}}...\infty ={{e}^{i\dfrac{\pi }{2}}}$ -- (iii)
Now we know that
$\Rightarrow {{e}^{i\theta }}=\cos \theta +i\sin \theta $
On using this formula we get,
$\Rightarrow {{e}^{i\dfrac{\pi }{2}}}=\cos \dfrac{\pi }{2}+i\sin \dfrac{\pi }{2}$
We know that$\cos \dfrac{\pi }{2}=0$ and $\sin \dfrac{\pi }{2}=1$ . On putting these values we get,
$\Rightarrow {{e}^{i\dfrac{\pi }{2}}}=0+i\times 1$ $=i$
On putting this value in Eq. (iii) we get
$\Rightarrow {{z}_{1}}.{{z}_{2}}.{{z}_{3}}...\infty =i$
Hence the correct answer is A.
Note: Don’t confuse the formula of infinite G.P. with finite G.P. The formula of finite G.P. is-
$\Rightarrow {{S}_{n}}=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}$
Where r is the common ratio, ‘a’ is the first term and n is the number of terms.
In Infinite G.P. series-
1) The series is said to be convergent when $-1< r < 1$ which means it has a sum.
2) The series is said to be divergent when $r>1$ or $r<-1$ which means it has no sum.
3) In the series, if $r\ge 1$ then the sum of the infinite G.P. series tends to infinity.
Complete step-by-step answer:
Given, ${{z}_{r}}=\cos \left( \dfrac{\pi }{{{3}^{r}}} \right)$ $+i\sin \left( \dfrac{\pi }{{{3}^{r}}} \right)$-- (i)
Where r=$1,2,3,...$
Then we have to find the value of ${{z}_{1}}.{{z}_{2}}.{{z}_{3}}...\infty $
We know that Euler’s formula is-
$\Rightarrow {{e}^{i\theta }}=\cos \theta +i\sin \theta $
On putting the value of $\theta =\dfrac{\pi }{{{3}^{r}}}$ , we get
$\Rightarrow {{e}^{i\dfrac{\pi }{{{3}^{\text{r}}}}}}=\cos \dfrac{\pi }{{{3}^{r}}}+i\sin \dfrac{\pi }{{{3}^{r}}}$ --- (ii)
From eq. (i) and (ii), we get-
$\Rightarrow {{z}_{\text{r}}}={{e}^{i\dfrac{\pi }{{{3}^{\text{r}}}}}}$-- (ii)
Now on putting the value of r=$1,2,3,...$, we get-
$\Rightarrow {{z}_{1}}={{e}^{i\dfrac{\pi }{{{3}^{1}}}}}$
$\Rightarrow {{z}_{2}}={{e}^{i\dfrac{\pi }{{{3}^{2}}}}}$
- - - - - -
$\Rightarrow {{z}_{n}}={{e}^{i\dfrac{\pi }{{{3}^{n}}}}}$
Then we can write
${{z}_{1}}.{{z}_{2}}.{{z}_{3}}...\infty =$${{e}^{i\dfrac{\pi }{{{3}^{1}}}}}.{{e}^{i\dfrac{\pi }{{{3}^{2}}}}}.{{e}^{i\dfrac{\pi }{{{3}^{3}}}}}...\infty $
Here the base of the multiplication is identical or same so the raised powers are added.
So the eq. becomes-
$\Rightarrow {{z}_{1}}.{{z}_{2}}.{{z}_{3}}...\infty ={{e}^{i\dfrac{\pi }{3}+i\dfrac{\pi }{{{3}^{2}}}+i\dfrac{\pi }{{{3}^{3}}}+...\infty }}$
On taking iota common we get,
$\Rightarrow {{z}_{1}}.{{z}_{2}}.{{z}_{3}}...\infty ={{e}^{i\left( \dfrac{\pi }{3}+\dfrac{\pi }{{{3}^{2}}}+\dfrac{\pi }{{{3}^{3}}}+...\infty \right)}}$
Here the raised power of e is in infinite G.P. so we can use the following formula to the sum of the terms-
$\Rightarrow $ S=$\dfrac{a}{1-r}$ where ‘a’ is the first term and r is the common ratio and $\left| \text{r} \right|<1$
Here the first term a=$\dfrac{\pi }{3}$ and common ratio is=$\dfrac{1}{3}$
On putting these values in the formula we get,
$\Rightarrow S=\dfrac{\dfrac{\pi }{3}}{1-\dfrac{1}{3}}$
On solving we get,
$\Rightarrow S=\dfrac{\dfrac{\pi }{3}}{\dfrac{3-1}{3}}=\dfrac{\pi }{2}$
On putting this value in the equation we get,
$\Rightarrow {{z}_{1}}.{{z}_{2}}.{{z}_{3}}...\infty ={{e}^{i\dfrac{\pi }{2}}}$ -- (iii)
Now we know that
$\Rightarrow {{e}^{i\theta }}=\cos \theta +i\sin \theta $
On using this formula we get,
$\Rightarrow {{e}^{i\dfrac{\pi }{2}}}=\cos \dfrac{\pi }{2}+i\sin \dfrac{\pi }{2}$
We know that$\cos \dfrac{\pi }{2}=0$ and $\sin \dfrac{\pi }{2}=1$ . On putting these values we get,
$\Rightarrow {{e}^{i\dfrac{\pi }{2}}}=0+i\times 1$ $=i$
On putting this value in Eq. (iii) we get
$\Rightarrow {{z}_{1}}.{{z}_{2}}.{{z}_{3}}...\infty =i$
Hence the correct answer is A.
Note: Don’t confuse the formula of infinite G.P. with finite G.P. The formula of finite G.P. is-
$\Rightarrow {{S}_{n}}=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}$
Where r is the common ratio, ‘a’ is the first term and n is the number of terms.
In Infinite G.P. series-
1) The series is said to be convergent when $-1< r < 1$ which means it has a sum.
2) The series is said to be divergent when $r>1$ or $r<-1$ which means it has no sum.
3) In the series, if $r\ge 1$ then the sum of the infinite G.P. series tends to infinity.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

