
If \[{z_1}\] and \[{z_2}\] are two complex numbers that \[\left| {{z_1}} \right| = \left| {{z_2}} \right| + \left| {{z_1} - {z_2}} \right|\]then,
A. \[\operatorname{Im} (\dfrac{{{z_1}}}{{{z_2}}}) = 0\]
B. \[\operatorname{Re} (\dfrac{{{z_1}}}{{{z_2}}}) = 0\]
C. \[\operatorname{Re} (\dfrac{{{z_1}}}{{{z_2}}}) = 0 = \operatorname{Im} (\dfrac{{{z_1}}}{{{z_2}}})\]
D. None of these
Answer
494.7k+ views
Hint:Any term of an equation may be taken from one side to other with the change in its sign, this does not affect the equality of the statement and this process is called transposition. The standard symbol for the set of all complex numbers is $Z = a+ib$, where $a$ and $b$ are real numbers. We will also use the formula \[\cos ({\theta _1} - {\theta _2}) = 1\].
Complete step by step answer:
According to the given information, we have,
\[\left| {{z_1}} \right| = \left| {{z_2}} \right| + \left| {{z_1} - {z_2}} \right|\]
By using transposition in the above equation, we get,
\[ \Rightarrow \left| {{z_1}} \right| - \left| {{z_2}} \right| = \left| {{z_1} - {z_2}} \right|\]
Squaring on both the sides, we get,
\[ \Rightarrow {(\left| {{z_1}} \right| - \left| {{z_2}} \right|)^2} = {\left| {{z_1} - {z_2}} \right|^2}\]
Simplify this above equation, we get,
\[ \Rightarrow {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2} - 2\left| {{z_1}} \right|\left| {{z_2}} \right| = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2} - 2\left| {{z_1}} \right|\left| {{z_2}} \right|\cos ({\theta _1} - {\theta _2})\]
We know that,
\[\cos ({\theta _1} - {\theta _2}) = 1\]
\[ \Rightarrow {\theta _1} - {\theta _2} = 0\]
As we know that, \[\arg ({z_1}) = {\theta _1}\]and \[\arg ({z_2}) = {\theta _2}\]
\[ \Rightarrow \arg ({z_1}) - \arg ({z_2}) = 0\]
\[ \Rightarrow \dfrac{{{z_1}}}{{{z_2}}}\]is purely real, which means that the imaginary part is zero.
\[ \Rightarrow \operatorname{Im} (\dfrac{{{z_1}}}{{{z_2}}}) = 0\]
Thus, if\[{z_1}\]and \[{z_2}\]are two complex numbers that \[\left| {{z_1}} \right| = \left| {{z_2}} \right| + \left| {{z_1} - {z_2}} \right|\]then\[\operatorname{Im} (\dfrac{{{z_1}}}{{{z_2}}}) = 0\].
Hence, option (1) is the correct answer.
Another method to solve this problem is as below:
Let,
\[{z_1} = \cos {\theta _1} + i\sin {\theta _1}\]and\[{z_2} = \cos {\theta _2} + i\sin {\theta _2}\]
\[\therefore {z_1} + {z_2} = \cos {\theta _1} + i\sin {\theta _1} + \cos {\theta _2} + i\sin {\theta _2}\]
\[ \Rightarrow {z_1} + {z_2} = (\cos {\theta _1} + \cos {\theta _2}) + i(\sin {\theta _1} + \sin {\theta _2})\]
Now,
\[\left| {{z_1} + {z_2}} \right| = \left| {{z_1}} \right| + \left| {{z_2}} \right|\]
Substituting the values, we get,
\[ \Rightarrow \sqrt {{{(\cos {\theta _1} + \cos {\theta _2})}^2} + {{(\sin {\theta _1} + \sin {\theta _2})}^2}} = 1 + 1\]
Simplify the above equation, we get,
\[ \Rightarrow \sqrt {{{(\cos {\theta _1} + \cos {\theta _2})}^2} + {{(\sin {\theta _1} + \sin {\theta _2})}^2}} = 2\]
Squaring on both the sides, we get,
\[ \Rightarrow {(\cos {\theta _1} + \cos {\theta _2})^2} + {(\sin {\theta _1} + \sin {\theta _2})^2} = {2^2}\]
\[ \Rightarrow 2(1 + \cos ({\theta _1} - {\theta _2})) = 4\]
Dividing number\[2\]on both the side, we get,
\[ \Rightarrow (1 + \cos ({\theta _1} - {\theta _2})) = \dfrac{4}{2}\]
\[ \Rightarrow 1 + \cos ({\theta _1} - {\theta _2}) = 2\]
By using the transposition in the above equation, we get,
\[ \Rightarrow \cos ({\theta _1} - {\theta _2}) = 2 - 1\]
\[ \Rightarrow \cos ({\theta _1} - {\theta _2}) = 1\]
\[ \Rightarrow {\theta _1} - {\theta _2} = 0\]
As we know that, \[\arg ({z_1}) = {\theta _1}\]and \[\arg ({z_2}) = {\theta _2}\]
\[ \Rightarrow \arg ({z_1}) - \arg ({z_2}) = 0\]
\[ \Rightarrow \dfrac{{{z_1}}}{{{z_2}}}\]is purely real, which means that the imaginary part is zero.
\[ \therefore \operatorname{Im} (\dfrac{{{z_1}}}{{{z_2}}}) = 0\]
Note:The complex number is the combination of a real number and an imaginary number. Either part can be zero. Hence, it is a simple representation of addition of real numbers and an imaginary number in the form of \[a + ib\], where $a$ and $b$ are constants and $i$ is the imaginary part. We also prove this using graphs too.
Complete step by step answer:
According to the given information, we have,
\[\left| {{z_1}} \right| = \left| {{z_2}} \right| + \left| {{z_1} - {z_2}} \right|\]
By using transposition in the above equation, we get,
\[ \Rightarrow \left| {{z_1}} \right| - \left| {{z_2}} \right| = \left| {{z_1} - {z_2}} \right|\]
Squaring on both the sides, we get,
\[ \Rightarrow {(\left| {{z_1}} \right| - \left| {{z_2}} \right|)^2} = {\left| {{z_1} - {z_2}} \right|^2}\]
Simplify this above equation, we get,
\[ \Rightarrow {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2} - 2\left| {{z_1}} \right|\left| {{z_2}} \right| = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2} - 2\left| {{z_1}} \right|\left| {{z_2}} \right|\cos ({\theta _1} - {\theta _2})\]
We know that,
\[\cos ({\theta _1} - {\theta _2}) = 1\]
\[ \Rightarrow {\theta _1} - {\theta _2} = 0\]
As we know that, \[\arg ({z_1}) = {\theta _1}\]and \[\arg ({z_2}) = {\theta _2}\]
\[ \Rightarrow \arg ({z_1}) - \arg ({z_2}) = 0\]
\[ \Rightarrow \dfrac{{{z_1}}}{{{z_2}}}\]is purely real, which means that the imaginary part is zero.
\[ \Rightarrow \operatorname{Im} (\dfrac{{{z_1}}}{{{z_2}}}) = 0\]
Thus, if\[{z_1}\]and \[{z_2}\]are two complex numbers that \[\left| {{z_1}} \right| = \left| {{z_2}} \right| + \left| {{z_1} - {z_2}} \right|\]then\[\operatorname{Im} (\dfrac{{{z_1}}}{{{z_2}}}) = 0\].
Hence, option (1) is the correct answer.
Another method to solve this problem is as below:
Let,
\[{z_1} = \cos {\theta _1} + i\sin {\theta _1}\]and\[{z_2} = \cos {\theta _2} + i\sin {\theta _2}\]
\[\therefore {z_1} + {z_2} = \cos {\theta _1} + i\sin {\theta _1} + \cos {\theta _2} + i\sin {\theta _2}\]
\[ \Rightarrow {z_1} + {z_2} = (\cos {\theta _1} + \cos {\theta _2}) + i(\sin {\theta _1} + \sin {\theta _2})\]
Now,
\[\left| {{z_1} + {z_2}} \right| = \left| {{z_1}} \right| + \left| {{z_2}} \right|\]
Substituting the values, we get,
\[ \Rightarrow \sqrt {{{(\cos {\theta _1} + \cos {\theta _2})}^2} + {{(\sin {\theta _1} + \sin {\theta _2})}^2}} = 1 + 1\]
Simplify the above equation, we get,
\[ \Rightarrow \sqrt {{{(\cos {\theta _1} + \cos {\theta _2})}^2} + {{(\sin {\theta _1} + \sin {\theta _2})}^2}} = 2\]
Squaring on both the sides, we get,
\[ \Rightarrow {(\cos {\theta _1} + \cos {\theta _2})^2} + {(\sin {\theta _1} + \sin {\theta _2})^2} = {2^2}\]
\[ \Rightarrow 2(1 + \cos ({\theta _1} - {\theta _2})) = 4\]
Dividing number\[2\]on both the side, we get,
\[ \Rightarrow (1 + \cos ({\theta _1} - {\theta _2})) = \dfrac{4}{2}\]
\[ \Rightarrow 1 + \cos ({\theta _1} - {\theta _2}) = 2\]
By using the transposition in the above equation, we get,
\[ \Rightarrow \cos ({\theta _1} - {\theta _2}) = 2 - 1\]
\[ \Rightarrow \cos ({\theta _1} - {\theta _2}) = 1\]
\[ \Rightarrow {\theta _1} - {\theta _2} = 0\]
As we know that, \[\arg ({z_1}) = {\theta _1}\]and \[\arg ({z_2}) = {\theta _2}\]
\[ \Rightarrow \arg ({z_1}) - \arg ({z_2}) = 0\]
\[ \Rightarrow \dfrac{{{z_1}}}{{{z_2}}}\]is purely real, which means that the imaginary part is zero.
\[ \therefore \operatorname{Im} (\dfrac{{{z_1}}}{{{z_2}}}) = 0\]
Note:The complex number is the combination of a real number and an imaginary number. Either part can be zero. Hence, it is a simple representation of addition of real numbers and an imaginary number in the form of \[a + ib\], where $a$ and $b$ are constants and $i$ is the imaginary part. We also prove this using graphs too.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

The camels hump is made of which tissues a Skeletal class 11 biology CBSE

