
If $$y=\tan^{-1} \left( \dfrac{ax-b}{bx+a} \right) $$, prove that $$\dfrac{dy}{dx} =\dfrac{1}{\left( 1+x^{2}\right) }$$
Answer
606.3k+ views
Hint: In this question it is given that if $$y=\tan^{-1} \left( \dfrac{ax-b}{bx+a} \right) $$,then we have to prove that $$\dfrac{dy}{dx} =\dfrac{1}{\left( 1+x^{2}\right) }$$.
So to find the solution we have to simply differentiate the given function with respect to ‘x’ and during integration we have to use some formulas, which are,
1) If f(x) be the the function of x, then, $$\dfrac{d}{dx} \tan^{-1} \left( f\left( x\right) \right) =\dfrac{1}{1+\left( f\left( x\right) \right)^{2} } \cdot \dfrac{d}{dx} \left( f\left( x\right) \right) $$
2) If u and v are the the function of x, then, $$\dfrac{d}{dx} \left( \dfrac{u}{v} \right) =\dfrac{v\dfrac{du}{dx} -u\dfrac{dv}{dx} }{v^{2}}$$
Complete step-by-step solution:
Given,
$$y=\tan^{-1} \left( \dfrac{ax-b}{bx+a} \right) $$
Now differentiating both side w.r.t ‘x’, we get,
$$\dfrac{dy}{dx} =\dfrac{d}{dx} \left( \tan^{-1} \left( \dfrac{ax-b}{bx+a} \right) \right) $$
$$=\dfrac{1}{1+\left( \dfrac{ax-b}{bx+a} \right)^{2} } \cdot \dfrac{d}{dx} \left( \dfrac{ax-b}{bx+a} \right) $$ [by using formula (1)]
$$=\dfrac{\left( bx+a\right)^{2} }{\left( bx+a\right)^{2} +\left( ax-b\right)^{2} } \cdot \dfrac{\left( bx+a\right) \cdot \dfrac{d}{dx} \left( ax-b\right) -\left( ax-b\right) \cdot \dfrac{d}{dx} \left( bx+a\right) }{\left( bx+a\right)^{2} }$$ [ by using formula (2)]
$$=\dfrac{\left( bx+a\right)^{2} }{\left( bx+a\right)^{2} +\left( ax-b\right)^{2} } \cdot \dfrac{\left( bx+a\right) \cdot a-\left( ax-b\right) \cdot b}{\left( bx+a\right)^{2} }$$
$$=\dfrac{a\left( bx+a\right) -b\left( ax-b\right) }{\left( bx+a\right)^{2} +\left( ax-b\right)^{2} }$$
$$=\dfrac{abx+a^{2}-abx+b^{2}}{\left( bx+a\right)^{2} +\left( ax-b\right)^{2} }$$
Now as we know that $$\left( p+q\right)^{2} =p^{2}+2pq+q^{2}$$ and $$\left( p-q\right)^{2} =p^{2}-2pq+q^{2}$$, so by these identity we can write the above equation as,
$$\dfrac{dy}{dx}=\dfrac{a^{2}+b^{2}}{b^{2}x^{2}+2abx+a^{{}2}+a^{2}x^{2}-2abx+b^{2}}$$
$$=\dfrac{a^{2}+b^{2}}{b^{2}x^{2}+a^{2}x^{2}+b^{2}+a^{2}}$$
$$=\dfrac{(b^{2}+a^{2})}{(b^{2}+a^{2})x^{2}+(b^{2}+a^{2})}$$
$$=\dfrac{(b^{2}+a^{2})}{(b^{2}+a^{2})\left( x^{2}+1\right) }$$ [taking $a^{2}+b^{2}$ from the denominator]
$$=\dfrac{1}{\left( x^{2}+1\right) }$$
$$=\dfrac{1}{\left( 1+x^{2}\right) }$$
Therefore, we have,
$$\dfrac{dy}{dx} =\dfrac{1}{\left( 1+x^{2}\right) }$$
Hence proved.
Note: While proving this kind of question you need to know the basic formulas of derivative that we have already mentioned in the hint portion also derivative of any polynomial, $$ax^{2}\pm bx\pm c$$ is can be written as,
$$\dfrac{d}{dx} \left( ax^{2}\pm bx\pm c\right)$$
$$=\dfrac{d}{dx} \left( ax^{2}\right) \pm \dfrac{d}{dx} \left( bx\right) \pm \dfrac{d}{dx} \left( c\right) $$
$$=a\dfrac{d}{dx} \left( x^{2}\right) \pm b$$
Where a,b and c are the constant and the derivative of a constant term is 0 and if any constant is multiplied with a variable then the derivative of that constant term can be taken outside.
So to find the solution we have to simply differentiate the given function with respect to ‘x’ and during integration we have to use some formulas, which are,
1) If f(x) be the the function of x, then, $$\dfrac{d}{dx} \tan^{-1} \left( f\left( x\right) \right) =\dfrac{1}{1+\left( f\left( x\right) \right)^{2} } \cdot \dfrac{d}{dx} \left( f\left( x\right) \right) $$
2) If u and v are the the function of x, then, $$\dfrac{d}{dx} \left( \dfrac{u}{v} \right) =\dfrac{v\dfrac{du}{dx} -u\dfrac{dv}{dx} }{v^{2}}$$
Complete step-by-step solution:
Given,
$$y=\tan^{-1} \left( \dfrac{ax-b}{bx+a} \right) $$
Now differentiating both side w.r.t ‘x’, we get,
$$\dfrac{dy}{dx} =\dfrac{d}{dx} \left( \tan^{-1} \left( \dfrac{ax-b}{bx+a} \right) \right) $$
$$=\dfrac{1}{1+\left( \dfrac{ax-b}{bx+a} \right)^{2} } \cdot \dfrac{d}{dx} \left( \dfrac{ax-b}{bx+a} \right) $$ [by using formula (1)]
$$=\dfrac{\left( bx+a\right)^{2} }{\left( bx+a\right)^{2} +\left( ax-b\right)^{2} } \cdot \dfrac{\left( bx+a\right) \cdot \dfrac{d}{dx} \left( ax-b\right) -\left( ax-b\right) \cdot \dfrac{d}{dx} \left( bx+a\right) }{\left( bx+a\right)^{2} }$$ [ by using formula (2)]
$$=\dfrac{\left( bx+a\right)^{2} }{\left( bx+a\right)^{2} +\left( ax-b\right)^{2} } \cdot \dfrac{\left( bx+a\right) \cdot a-\left( ax-b\right) \cdot b}{\left( bx+a\right)^{2} }$$
$$=\dfrac{a\left( bx+a\right) -b\left( ax-b\right) }{\left( bx+a\right)^{2} +\left( ax-b\right)^{2} }$$
$$=\dfrac{abx+a^{2}-abx+b^{2}}{\left( bx+a\right)^{2} +\left( ax-b\right)^{2} }$$
Now as we know that $$\left( p+q\right)^{2} =p^{2}+2pq+q^{2}$$ and $$\left( p-q\right)^{2} =p^{2}-2pq+q^{2}$$, so by these identity we can write the above equation as,
$$\dfrac{dy}{dx}=\dfrac{a^{2}+b^{2}}{b^{2}x^{2}+2abx+a^{{}2}+a^{2}x^{2}-2abx+b^{2}}$$
$$=\dfrac{a^{2}+b^{2}}{b^{2}x^{2}+a^{2}x^{2}+b^{2}+a^{2}}$$
$$=\dfrac{(b^{2}+a^{2})}{(b^{2}+a^{2})x^{2}+(b^{2}+a^{2})}$$
$$=\dfrac{(b^{2}+a^{2})}{(b^{2}+a^{2})\left( x^{2}+1\right) }$$ [taking $a^{2}+b^{2}$ from the denominator]
$$=\dfrac{1}{\left( x^{2}+1\right) }$$
$$=\dfrac{1}{\left( 1+x^{2}\right) }$$
Therefore, we have,
$$\dfrac{dy}{dx} =\dfrac{1}{\left( 1+x^{2}\right) }$$
Hence proved.
Note: While proving this kind of question you need to know the basic formulas of derivative that we have already mentioned in the hint portion also derivative of any polynomial, $$ax^{2}\pm bx\pm c$$ is can be written as,
$$\dfrac{d}{dx} \left( ax^{2}\pm bx\pm c\right)$$
$$=\dfrac{d}{dx} \left( ax^{2}\right) \pm \dfrac{d}{dx} \left( bx\right) \pm \dfrac{d}{dx} \left( c\right) $$
$$=a\dfrac{d}{dx} \left( x^{2}\right) \pm b$$
Where a,b and c are the constant and the derivative of a constant term is 0 and if any constant is multiplied with a variable then the derivative of that constant term can be taken outside.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

