
If $y=\sqrt{x}+\dfrac{1}{\sqrt{x}}$, prove that $2x\dfrac{dy}{dx}+y=2\sqrt{x}$.
Answer
607.2k+ views
Hint: For solving this question we will first square the terms on the left-hand side and right-hand sides in the given equation. Then, we will try to get the equation $x{{y}^{2}}={{x}^{2}}+1+2x$. After that, we will apply the product rule of differential calculus and formulas like $\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}$, $\dfrac{d\left( {{y}^{n}} \right)}{dx}=\left( n{{y}^{n-1}} \right)\dfrac{dy}{dx}$. Then, we will arrange the terms in the result to prove the desired result easily.
Complete step-by-step answer:
It is given that, $y=\sqrt{x}+\dfrac{1}{\sqrt{x}}$ and we have to prove the following equation:
$2x\dfrac{dy}{dx}+y=2\sqrt{x}$
Now, before we proceed, we should know the following formula:
${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab.............\left( 1 \right)$
Now, we will square the terms on the left-hand side and right-hand sides in the given equation. Then,
$\begin{align}
& y=\sqrt{x}+\dfrac{1}{\sqrt{x}} \\
& \Rightarrow {{y}^{2}}={{\left( \sqrt{x}+\dfrac{1}{\sqrt{x}} \right)}^{2}} \\
\end{align}$
Now, we will use the formula from the equation to write ${{\left( \sqrt{x}+\dfrac{1}{\sqrt{x}} \right)}^{2}}=x+\dfrac{1}{x}+2$ in the above equation. Then,
$\begin{align}
& {{y}^{2}}={{\left( \sqrt{x}+\dfrac{1}{\sqrt{x}} \right)}^{2}} \\
& \Rightarrow {{y}^{2}}={{\left( \sqrt{x} \right)}^{2}}+{{\left( \dfrac{1}{\sqrt{x}} \right)}^{2}}+2\times \sqrt{x}\times \dfrac{1}{\sqrt{x}} \\
& \Rightarrow {{y}^{2}}=x+\dfrac{1}{x}+2 \\
\end{align}$
Now, we will multiply the above equation by the variable $x$ . Then,
$\begin{align}
& {{y}^{2}}=x+\dfrac{1}{x}+2 \\
& \Rightarrow x{{y}^{2}}={{x}^{2}}+x\times \dfrac{1}{x}+2x \\
& \Rightarrow x{{y}^{2}}={{x}^{2}}+1+2x...........................\left( 2 \right) \\
\end{align}$
Now, we will use the formula from the equation (1) to write ${{x}^{2}}+1+2x={{\left( x+1 \right)}^{2}}$ in the above equation. Then,
$\begin{align}
& x{{y}^{2}}={{x}^{2}}+1+2x \\
& \Rightarrow x{{y}^{2}}={{\left( x+1 \right)}^{2}} \\
\end{align}$
Now, we will take the square-root of the terms on the left-hand side and right-hand sides in the above equation. Then,
$\begin{align}
& x{{y}^{2}}={{\left( x+1 \right)}^{2}} \\
& \Rightarrow \sqrt{x{{y}^{2}}}=\sqrt{{{\left( x+1 \right)}^{2}}} \\
& \Rightarrow y\sqrt{x}=\left( x+1 \right)........................\left( 3 \right) \\
\end{align}$
Now, before we proceed, we should know the following formulas and concepts of differential calculus:
1. If $y=f\left( x \right)\cdot g\left( x \right)$ , then $\dfrac{dy}{dx}=\dfrac{d\left( f\left( x \right)\cdot g\left( x \right) \right)}{dx}={f}'\left( x \right)\cdot g\left( x \right)+f\left( x \right)\cdot {g}'\left( x \right)$. This is also known as the product rule of differentiation.
2. If $y={{x}^{n}}$ , then $\dfrac{dy}{dx}=\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}$.
3. Derivative of ${{y}^{n}}$ with respect to $x$ will be $\dfrac{d\left( {{y}^{n}} \right)}{dx}=\left( n{{y}^{n-1}} \right)\dfrac{dy}{dx}$ .
Now, from the equation (2) we have the following equation:
$x{{y}^{2}}={{x}^{2}}+1+2x$
Now, we will differentiate the above equation with respect to $x$ . Then,
$\begin{align}
& x{{y}^{2}}={{x}^{2}}+1+2x \\
& \Rightarrow \dfrac{d\left( x{{y}^{2}} \right)}{dx}=\dfrac{d\left( {{x}^{2}}+1+2x \right)}{dx} \\
\end{align}$
Now, we will use the product rule of differentiation to write $\dfrac{d\left( x{{y}^{2}} \right)}{dx}={{y}^{2}}+2xy\dfrac{dy}{dx}$ in the above equation. Then,
$\begin{align}
& \dfrac{d\left( x{{y}^{2}} \right)}{dx}=\dfrac{d\left( {{x}^{2}}+1+2x \right)}{dx} \\
& \Rightarrow \dfrac{d\left( x \right)}{dx}\times {{y}^{2}}+x\times \dfrac{d\left( {{y}^{2}} \right)}{dx}=\dfrac{d\left( {{x}^{2}} \right)}{dx}+\dfrac{d\left( 1 \right)}{dx}+\dfrac{d\left( 2x \right)}{dx} \\
\end{align}$
Now, we will use the formula $\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}$ to write $\dfrac{d\left( x \right)}{dx}=1$ , $\dfrac{d\left( {{x}^{2}} \right)}{dx}=2x$ , $\dfrac{d\left( 2x \right)}{dx}=2$ and formula $\dfrac{d\left( {{y}^{n}} \right)}{dx}=\left( n{{y}^{n-1}} \right)\dfrac{dy}{dx}$ to write $\dfrac{d\left( {{y}^{2}} \right)}{dx}=2y\dfrac{dy}{dx}$ and as $1$ is a constant term so, we can write $\dfrac{d\left( 1 \right)}{dx}=0$ in the above equation. Then,
$\begin{align}
& \dfrac{d\left( x \right)}{dx}\times {{y}^{2}}+x\times \dfrac{d\left( {{y}^{2}} \right)}{dx}=\dfrac{d\left( {{x}^{2}} \right)}{dx}+\dfrac{d\left( 1 \right)}{dx}+\dfrac{d\left( 2x \right)}{dx} \\
& \Rightarrow {{y}^{2}}+x\times 2y\dfrac{dy}{dx}=2x+0+2 \\
& \Rightarrow {{y}^{2}}+2xy\dfrac{dy}{dx}=2\left( x+1 \right) \\
& \Rightarrow y\left( y+2x\dfrac{dy}{dx} \right)=2\left( x+1 \right) \\
& \Rightarrow y+2x\dfrac{dy}{dx}=\dfrac{2\left( x+1 \right)}{y} \\
\end{align}$
Now, we will substitute $\left( x+1 \right)=y\sqrt{x}$ from equation (3) in the above equation. Then,
$\begin{align}
& y+2x\dfrac{dy}{dx}=\dfrac{2\left( x+1 \right)}{y} \\
& \Rightarrow y+2x\dfrac{dy}{dx}=\dfrac{2y\sqrt{x}}{y} \\
& \Rightarrow y+2x\dfrac{dy}{dx}=2\sqrt{x} \\
& \Rightarrow 2x\dfrac{dy}{dx}+y=2\sqrt{x} \\
\end{align}$
Now, from the above result, we conclude that, $2x\dfrac{dy}{dx}+y=2\sqrt{x}$ .
Hence proved.
Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to prove the desired result quickly. And to avoid long calculations, we should first try to get an equation in $x$ and $y$ such that we will get a term like $x\dfrac{dy}{dx}$ after differentiating it. Moreover, we should apply the product rule of differential calculus, and formulas like $\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}$, $\dfrac{d\left( {{y}^{n}} \right)}{dx}=\left( n{{y}^{n-1}} \right)\dfrac{dy}{dx}$ correctly without any mathematical error to prove the desired result easily.
Complete step-by-step answer:
It is given that, $y=\sqrt{x}+\dfrac{1}{\sqrt{x}}$ and we have to prove the following equation:
$2x\dfrac{dy}{dx}+y=2\sqrt{x}$
Now, before we proceed, we should know the following formula:
${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab.............\left( 1 \right)$
Now, we will square the terms on the left-hand side and right-hand sides in the given equation. Then,
$\begin{align}
& y=\sqrt{x}+\dfrac{1}{\sqrt{x}} \\
& \Rightarrow {{y}^{2}}={{\left( \sqrt{x}+\dfrac{1}{\sqrt{x}} \right)}^{2}} \\
\end{align}$
Now, we will use the formula from the equation to write ${{\left( \sqrt{x}+\dfrac{1}{\sqrt{x}} \right)}^{2}}=x+\dfrac{1}{x}+2$ in the above equation. Then,
$\begin{align}
& {{y}^{2}}={{\left( \sqrt{x}+\dfrac{1}{\sqrt{x}} \right)}^{2}} \\
& \Rightarrow {{y}^{2}}={{\left( \sqrt{x} \right)}^{2}}+{{\left( \dfrac{1}{\sqrt{x}} \right)}^{2}}+2\times \sqrt{x}\times \dfrac{1}{\sqrt{x}} \\
& \Rightarrow {{y}^{2}}=x+\dfrac{1}{x}+2 \\
\end{align}$
Now, we will multiply the above equation by the variable $x$ . Then,
$\begin{align}
& {{y}^{2}}=x+\dfrac{1}{x}+2 \\
& \Rightarrow x{{y}^{2}}={{x}^{2}}+x\times \dfrac{1}{x}+2x \\
& \Rightarrow x{{y}^{2}}={{x}^{2}}+1+2x...........................\left( 2 \right) \\
\end{align}$
Now, we will use the formula from the equation (1) to write ${{x}^{2}}+1+2x={{\left( x+1 \right)}^{2}}$ in the above equation. Then,
$\begin{align}
& x{{y}^{2}}={{x}^{2}}+1+2x \\
& \Rightarrow x{{y}^{2}}={{\left( x+1 \right)}^{2}} \\
\end{align}$
Now, we will take the square-root of the terms on the left-hand side and right-hand sides in the above equation. Then,
$\begin{align}
& x{{y}^{2}}={{\left( x+1 \right)}^{2}} \\
& \Rightarrow \sqrt{x{{y}^{2}}}=\sqrt{{{\left( x+1 \right)}^{2}}} \\
& \Rightarrow y\sqrt{x}=\left( x+1 \right)........................\left( 3 \right) \\
\end{align}$
Now, before we proceed, we should know the following formulas and concepts of differential calculus:
1. If $y=f\left( x \right)\cdot g\left( x \right)$ , then $\dfrac{dy}{dx}=\dfrac{d\left( f\left( x \right)\cdot g\left( x \right) \right)}{dx}={f}'\left( x \right)\cdot g\left( x \right)+f\left( x \right)\cdot {g}'\left( x \right)$. This is also known as the product rule of differentiation.
2. If $y={{x}^{n}}$ , then $\dfrac{dy}{dx}=\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}$.
3. Derivative of ${{y}^{n}}$ with respect to $x$ will be $\dfrac{d\left( {{y}^{n}} \right)}{dx}=\left( n{{y}^{n-1}} \right)\dfrac{dy}{dx}$ .
Now, from the equation (2) we have the following equation:
$x{{y}^{2}}={{x}^{2}}+1+2x$
Now, we will differentiate the above equation with respect to $x$ . Then,
$\begin{align}
& x{{y}^{2}}={{x}^{2}}+1+2x \\
& \Rightarrow \dfrac{d\left( x{{y}^{2}} \right)}{dx}=\dfrac{d\left( {{x}^{2}}+1+2x \right)}{dx} \\
\end{align}$
Now, we will use the product rule of differentiation to write $\dfrac{d\left( x{{y}^{2}} \right)}{dx}={{y}^{2}}+2xy\dfrac{dy}{dx}$ in the above equation. Then,
$\begin{align}
& \dfrac{d\left( x{{y}^{2}} \right)}{dx}=\dfrac{d\left( {{x}^{2}}+1+2x \right)}{dx} \\
& \Rightarrow \dfrac{d\left( x \right)}{dx}\times {{y}^{2}}+x\times \dfrac{d\left( {{y}^{2}} \right)}{dx}=\dfrac{d\left( {{x}^{2}} \right)}{dx}+\dfrac{d\left( 1 \right)}{dx}+\dfrac{d\left( 2x \right)}{dx} \\
\end{align}$
Now, we will use the formula $\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}$ to write $\dfrac{d\left( x \right)}{dx}=1$ , $\dfrac{d\left( {{x}^{2}} \right)}{dx}=2x$ , $\dfrac{d\left( 2x \right)}{dx}=2$ and formula $\dfrac{d\left( {{y}^{n}} \right)}{dx}=\left( n{{y}^{n-1}} \right)\dfrac{dy}{dx}$ to write $\dfrac{d\left( {{y}^{2}} \right)}{dx}=2y\dfrac{dy}{dx}$ and as $1$ is a constant term so, we can write $\dfrac{d\left( 1 \right)}{dx}=0$ in the above equation. Then,
$\begin{align}
& \dfrac{d\left( x \right)}{dx}\times {{y}^{2}}+x\times \dfrac{d\left( {{y}^{2}} \right)}{dx}=\dfrac{d\left( {{x}^{2}} \right)}{dx}+\dfrac{d\left( 1 \right)}{dx}+\dfrac{d\left( 2x \right)}{dx} \\
& \Rightarrow {{y}^{2}}+x\times 2y\dfrac{dy}{dx}=2x+0+2 \\
& \Rightarrow {{y}^{2}}+2xy\dfrac{dy}{dx}=2\left( x+1 \right) \\
& \Rightarrow y\left( y+2x\dfrac{dy}{dx} \right)=2\left( x+1 \right) \\
& \Rightarrow y+2x\dfrac{dy}{dx}=\dfrac{2\left( x+1 \right)}{y} \\
\end{align}$
Now, we will substitute $\left( x+1 \right)=y\sqrt{x}$ from equation (3) in the above equation. Then,
$\begin{align}
& y+2x\dfrac{dy}{dx}=\dfrac{2\left( x+1 \right)}{y} \\
& \Rightarrow y+2x\dfrac{dy}{dx}=\dfrac{2y\sqrt{x}}{y} \\
& \Rightarrow y+2x\dfrac{dy}{dx}=2\sqrt{x} \\
& \Rightarrow 2x\dfrac{dy}{dx}+y=2\sqrt{x} \\
\end{align}$
Now, from the above result, we conclude that, $2x\dfrac{dy}{dx}+y=2\sqrt{x}$ .
Hence proved.
Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to prove the desired result quickly. And to avoid long calculations, we should first try to get an equation in $x$ and $y$ such that we will get a term like $x\dfrac{dy}{dx}$ after differentiating it. Moreover, we should apply the product rule of differential calculus, and formulas like $\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}$, $\dfrac{d\left( {{y}^{n}} \right)}{dx}=\left( n{{y}^{n-1}} \right)\dfrac{dy}{dx}$ correctly without any mathematical error to prove the desired result easily.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

