
If $y = {x^{{x^{{x^{x...\infty }}}}}}$ then $\dfrac{{dy}}{{dx}} = $?
\[
\left( A \right)\quad \dfrac{y}{{x\left( {1 - \log x} \right)}} \\
\left( B \right)\quad \dfrac{{{y^2}}}{{x\left( {1 - \log x} \right)}} \\
\left( C \right)\quad \dfrac{{{y^2}}}{{x\left( {1 - y\log x} \right)}} \\
\left( D \right)\quad none\;of\;these \\
\]
Answer
582.6k+ views
Hint: We will first convert the given equation in a familiar one (exponential, linear etc). Here we will convert the equation in exponential form. After that take the log on both sides and differentiate.
Complete step-by-step answer:
We are given that $y = {x^{{x^{{x^{x...\infty }}}}}}$. If we look closely, we can observe that,
\[
\Rightarrow y = {x^{{x^{{x^{x...\infty }}}}}} \\
\Rightarrow y = {\left( x \right)^{{x^{{x^{x...\infty }}}}}} \\
\Rightarrow y = {\left( x \right)^y} \\
\Rightarrow y = {x^y} \\
\]
As we know, when we have to find the $\dfrac{{dy}}{{dx}}$ of exponential functions, we first take the $\log $ on both sides of equations and proceed further.
\[ \Rightarrow y = {x^y}\]
We know that $\log \left( {{m^n}} \right) = n\log \left( m \right)$.
Taking $\log $ both sides, we get
$
\Rightarrow \log \left( y \right) = \log \left( {{x^y}} \right) \\
\Rightarrow \log \left( y \right) = y\log \left( x \right) \\
$
Now, we will differentiate the equation on both sides.
$ \Rightarrow \dfrac{{d\left( {\log \left( y \right)} \right)}}{{dx}}\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {y\log \left( x \right)} \right)}}{{dx}}$
As we know, $\dfrac{{d\left( {u.v} \right)}}{{dx}} = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$
Therefore,
$
\Rightarrow \dfrac{{d\left( {\log \left( y \right)} \right)}}{{dx}}\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {y\log \left( x \right)} \right)}}{{dx}} \\
\Rightarrow \left( {\dfrac{1}{y}} \right)\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dx}}\left( {\log \left( x \right)} \right) + y\left( {\dfrac{1}{x}} \right) \\
$
On simplifying this, we will get
$
\Rightarrow \left( {\dfrac{1}{y}} \right)\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dx}}\left( {\log \left( x \right)} \right) + y\left( {\dfrac{1}{x}} \right) \\
\Rightarrow \left( {\dfrac{1}{y} - \log x} \right)\dfrac{{dy}}{{dx}} = \dfrac{y}{x} \\
\Rightarrow \left( {\dfrac{{1 - y\log x}}{y}} \right)\dfrac{{dy}}{{dx}} = \dfrac{y}{x} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \left( {\dfrac{y}{x}} \right)\left( {\dfrac{y}{{1 - y\log x}}} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{y^2}}}{{x\left( {1 - y\log x} \right)}} \\
$
Hence the answer is \[\left( C \right)\quad \dfrac{{{y^2}}}{{x\left( {1 - y\log x} \right)}}\].
Additional information : Some of the properties and useful formulas are as follows.
$
\Rightarrow \log \left( {mn} \right) = \log \left( m \right) + \log \left( n \right) \\
\Rightarrow \log \left( {{m^n}} \right) = n\log \left( m \right) \\
$
Note: It is necessary to convert the given form of $y = {x^{{x^{{x^{x...\infty }}}}}}$in the form$y = {x^y}$. Otherwise we won’t be able to solve the question properly.
Complete step-by-step answer:
We are given that $y = {x^{{x^{{x^{x...\infty }}}}}}$. If we look closely, we can observe that,
\[
\Rightarrow y = {x^{{x^{{x^{x...\infty }}}}}} \\
\Rightarrow y = {\left( x \right)^{{x^{{x^{x...\infty }}}}}} \\
\Rightarrow y = {\left( x \right)^y} \\
\Rightarrow y = {x^y} \\
\]
As we know, when we have to find the $\dfrac{{dy}}{{dx}}$ of exponential functions, we first take the $\log $ on both sides of equations and proceed further.
\[ \Rightarrow y = {x^y}\]
We know that $\log \left( {{m^n}} \right) = n\log \left( m \right)$.
Taking $\log $ both sides, we get
$
\Rightarrow \log \left( y \right) = \log \left( {{x^y}} \right) \\
\Rightarrow \log \left( y \right) = y\log \left( x \right) \\
$
Now, we will differentiate the equation on both sides.
$ \Rightarrow \dfrac{{d\left( {\log \left( y \right)} \right)}}{{dx}}\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {y\log \left( x \right)} \right)}}{{dx}}$
As we know, $\dfrac{{d\left( {u.v} \right)}}{{dx}} = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$
Therefore,
$
\Rightarrow \dfrac{{d\left( {\log \left( y \right)} \right)}}{{dx}}\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {y\log \left( x \right)} \right)}}{{dx}} \\
\Rightarrow \left( {\dfrac{1}{y}} \right)\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dx}}\left( {\log \left( x \right)} \right) + y\left( {\dfrac{1}{x}} \right) \\
$
On simplifying this, we will get
$
\Rightarrow \left( {\dfrac{1}{y}} \right)\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dx}}\left( {\log \left( x \right)} \right) + y\left( {\dfrac{1}{x}} \right) \\
\Rightarrow \left( {\dfrac{1}{y} - \log x} \right)\dfrac{{dy}}{{dx}} = \dfrac{y}{x} \\
\Rightarrow \left( {\dfrac{{1 - y\log x}}{y}} \right)\dfrac{{dy}}{{dx}} = \dfrac{y}{x} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \left( {\dfrac{y}{x}} \right)\left( {\dfrac{y}{{1 - y\log x}}} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{y^2}}}{{x\left( {1 - y\log x} \right)}} \\
$
Hence the answer is \[\left( C \right)\quad \dfrac{{{y^2}}}{{x\left( {1 - y\log x} \right)}}\].
Additional information : Some of the properties and useful formulas are as follows.
$
\Rightarrow \log \left( {mn} \right) = \log \left( m \right) + \log \left( n \right) \\
\Rightarrow \log \left( {{m^n}} \right) = n\log \left( m \right) \\
$
Note: It is necessary to convert the given form of $y = {x^{{x^{{x^{x...\infty }}}}}}$in the form$y = {x^y}$. Otherwise we won’t be able to solve the question properly.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

