
If $ x,y $ and $ z $ are in A.P, then \[\dfrac{{\sin x - \sin z}}{{\cos z - \cos x}}\]is equal to
A. $ \tan y $
B. $ \cot y $
C. $ \sin y $
D. $ \cos y $
Answer
567.9k+ views
Hint: Arithmetic Progression, A.P. is a progression where the difference between any two consecutive terms is constant. i.e. $ {a_n} - {a_{n - 1}} = d $
Complete step-by-step answer:
It is given in the question that
$ x,y $ and $ z $ are in A.P.
Then by the definition of A.P. we can write
$ y - x = z - y $
Re-arranging it, we get
$ 2y = x + z $
$ \Rightarrow y = \dfrac{{z + x}}{2} $ . . . . . (1)
Now,
\[\dfrac{{\sin x - \sin z}}{{\cos z - \cos x}} = \dfrac{{2\sin \left( {\dfrac{{x - z}}{2}} \right).\cos \left( {\dfrac{{x + z}}{2}} \right)}}{{2\sin \left( {\dfrac{{x - z}}{2}} \right)\sin \left( {\dfrac{{x + z}}{2}} \right)}}\]
$ \left( {\because \sin A - \sin B = 2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right)} \right) $
$ \left( {\because \cos A - \cos B = 2\sin \left( {\dfrac{{B - A}}{2}} \right)\sin \left( {\dfrac{{B + A}}{2}} \right)} \right) $
By cancelling the common terms in numerator and denominator, we get
\[\dfrac{{\sin x - \sin z}}{{\cos z - \cos x}} = \dfrac{{\cos \left( {\dfrac{{x + z}}{2}} \right)}}{{\sin \left( {\dfrac{{x + z}}{2}} \right)}}\]
$ \Rightarrow \dfrac{{\sin x - \sin z}}{{\cos z - \cos x}} = \dfrac{{\cos y}}{{\sin y}} $ (From equation (1))
$ \Rightarrow \dfrac{{\sin x - \sin z}}{{\cos z - \cos x}} = \cot y $ $ \left( {\because \dfrac{{\cos y}}{{\sin y}} = \cot y} \right) $
Hence, the value of $ \dfrac{{\sin x - \sin z}}{{\cos z - \cos x}} $ is equal to $ \cot y. $
Therefore, from the above discussion, the correct option is (B) $ \cot y $
So, the correct answer is “Option B”.
Note: You should be careful while using the formula of $ \cos A - \cos B $ because in every other formula of this type, you get the term $ A - B $ to the RHS. But for this particular case, it is $ B - A $. Also remember that cos(-x)=cosx.
Complete step-by-step answer:
It is given in the question that
$ x,y $ and $ z $ are in A.P.
Then by the definition of A.P. we can write
$ y - x = z - y $
Re-arranging it, we get
$ 2y = x + z $
$ \Rightarrow y = \dfrac{{z + x}}{2} $ . . . . . (1)
Now,
\[\dfrac{{\sin x - \sin z}}{{\cos z - \cos x}} = \dfrac{{2\sin \left( {\dfrac{{x - z}}{2}} \right).\cos \left( {\dfrac{{x + z}}{2}} \right)}}{{2\sin \left( {\dfrac{{x - z}}{2}} \right)\sin \left( {\dfrac{{x + z}}{2}} \right)}}\]
$ \left( {\because \sin A - \sin B = 2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right)} \right) $
$ \left( {\because \cos A - \cos B = 2\sin \left( {\dfrac{{B - A}}{2}} \right)\sin \left( {\dfrac{{B + A}}{2}} \right)} \right) $
By cancelling the common terms in numerator and denominator, we get
\[\dfrac{{\sin x - \sin z}}{{\cos z - \cos x}} = \dfrac{{\cos \left( {\dfrac{{x + z}}{2}} \right)}}{{\sin \left( {\dfrac{{x + z}}{2}} \right)}}\]
$ \Rightarrow \dfrac{{\sin x - \sin z}}{{\cos z - \cos x}} = \dfrac{{\cos y}}{{\sin y}} $ (From equation (1))
$ \Rightarrow \dfrac{{\sin x - \sin z}}{{\cos z - \cos x}} = \cot y $ $ \left( {\because \dfrac{{\cos y}}{{\sin y}} = \cot y} \right) $
Hence, the value of $ \dfrac{{\sin x - \sin z}}{{\cos z - \cos x}} $ is equal to $ \cot y. $
Therefore, from the above discussion, the correct option is (B) $ \cot y $
So, the correct answer is “Option B”.
Note: You should be careful while using the formula of $ \cos A - \cos B $ because in every other formula of this type, you get the term $ A - B $ to the RHS. But for this particular case, it is $ B - A $. Also remember that cos(-x)=cosx.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

