
If $ x,y $ and $ z $ are in A.P, then \[\dfrac{{\sin x - \sin z}}{{\cos z - \cos x}}\]is equal to
A. $ \tan y $
B. $ \cot y $
C. $ \sin y $
D. $ \cos y $
Answer
487.5k+ views
Hint: Arithmetic Progression, A.P. is a progression where the difference between any two consecutive terms is constant. i.e. $ {a_n} - {a_{n - 1}} = d $
Complete step-by-step answer:
It is given in the question that
$ x,y $ and $ z $ are in A.P.
Then by the definition of A.P. we can write
$ y - x = z - y $
Re-arranging it, we get
$ 2y = x + z $
$ \Rightarrow y = \dfrac{{z + x}}{2} $ . . . . . (1)
Now,
\[\dfrac{{\sin x - \sin z}}{{\cos z - \cos x}} = \dfrac{{2\sin \left( {\dfrac{{x - z}}{2}} \right).\cos \left( {\dfrac{{x + z}}{2}} \right)}}{{2\sin \left( {\dfrac{{x - z}}{2}} \right)\sin \left( {\dfrac{{x + z}}{2}} \right)}}\]
$ \left( {\because \sin A - \sin B = 2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right)} \right) $
$ \left( {\because \cos A - \cos B = 2\sin \left( {\dfrac{{B - A}}{2}} \right)\sin \left( {\dfrac{{B + A}}{2}} \right)} \right) $
By cancelling the common terms in numerator and denominator, we get
\[\dfrac{{\sin x - \sin z}}{{\cos z - \cos x}} = \dfrac{{\cos \left( {\dfrac{{x + z}}{2}} \right)}}{{\sin \left( {\dfrac{{x + z}}{2}} \right)}}\]
$ \Rightarrow \dfrac{{\sin x - \sin z}}{{\cos z - \cos x}} = \dfrac{{\cos y}}{{\sin y}} $ (From equation (1))
$ \Rightarrow \dfrac{{\sin x - \sin z}}{{\cos z - \cos x}} = \cot y $ $ \left( {\because \dfrac{{\cos y}}{{\sin y}} = \cot y} \right) $
Hence, the value of $ \dfrac{{\sin x - \sin z}}{{\cos z - \cos x}} $ is equal to $ \cot y. $
Therefore, from the above discussion, the correct option is (B) $ \cot y $
So, the correct answer is “Option B”.
Note: You should be careful while using the formula of $ \cos A - \cos B $ because in every other formula of this type, you get the term $ A - B $ to the RHS. But for this particular case, it is $ B - A $. Also remember that cos(-x)=cosx.
Complete step-by-step answer:
It is given in the question that
$ x,y $ and $ z $ are in A.P.
Then by the definition of A.P. we can write
$ y - x = z - y $
Re-arranging it, we get
$ 2y = x + z $
$ \Rightarrow y = \dfrac{{z + x}}{2} $ . . . . . (1)
Now,
\[\dfrac{{\sin x - \sin z}}{{\cos z - \cos x}} = \dfrac{{2\sin \left( {\dfrac{{x - z}}{2}} \right).\cos \left( {\dfrac{{x + z}}{2}} \right)}}{{2\sin \left( {\dfrac{{x - z}}{2}} \right)\sin \left( {\dfrac{{x + z}}{2}} \right)}}\]
$ \left( {\because \sin A - \sin B = 2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right)} \right) $
$ \left( {\because \cos A - \cos B = 2\sin \left( {\dfrac{{B - A}}{2}} \right)\sin \left( {\dfrac{{B + A}}{2}} \right)} \right) $
By cancelling the common terms in numerator and denominator, we get
\[\dfrac{{\sin x - \sin z}}{{\cos z - \cos x}} = \dfrac{{\cos \left( {\dfrac{{x + z}}{2}} \right)}}{{\sin \left( {\dfrac{{x + z}}{2}} \right)}}\]
$ \Rightarrow \dfrac{{\sin x - \sin z}}{{\cos z - \cos x}} = \dfrac{{\cos y}}{{\sin y}} $ (From equation (1))
$ \Rightarrow \dfrac{{\sin x - \sin z}}{{\cos z - \cos x}} = \cot y $ $ \left( {\because \dfrac{{\cos y}}{{\sin y}} = \cot y} \right) $
Hence, the value of $ \dfrac{{\sin x - \sin z}}{{\cos z - \cos x}} $ is equal to $ \cot y. $
Therefore, from the above discussion, the correct option is (B) $ \cot y $
So, the correct answer is “Option B”.
Note: You should be careful while using the formula of $ \cos A - \cos B $ because in every other formula of this type, you get the term $ A - B $ to the RHS. But for this particular case, it is $ B - A $. Also remember that cos(-x)=cosx.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
