
If \[{x_r} = \cos (\dfrac{\pi }{{{3^r}}}) - i\sin (\dfrac{\pi }{{{3^r}}})\],(where $i = \sqrt { - 1} $) then the value of ${x_1}.{x_2}.{x_3}...........\infty $ is
A.1
B.-1
C.-$i$
D.$i$
Answer
575.4k+ views
Hint: To solve this question first of all, apply Euler’s formula given as
$ \Rightarrow {e^{ - i\theta }} = \cos \theta - i\sin \theta $
After solving the equation, you will get the value of ${x_1}.{x_2}.{x_3}...........\infty $ i.e.
$ \Rightarrow {x_1}.{x_2}.{x_3}...........\infty = {e^{i(\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + .......\infty )}}$
Now apply the formula for infinite G.P as you can see $\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + .......\infty $series are in G.P and the formula for sum of G.P is given by
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}}$, where a is first term and r is common multiple.
Complete step-by-step answer:
In this question, an equation is given i.e.
\[ \Rightarrow {x_r} = \cos (\dfrac{\pi }{{{3^r}}}) - i\sin (\dfrac{\pi }{{{3^r}}})\] ……..(1)
Let’s start with solving this equation by equating it with Euler’s formula we get,
$ \Rightarrow {e^{ - i\theta }} = \cos \theta - i\sin \theta $
$ \Rightarrow {e^{ - i(\dfrac{\pi }{{{3^r}}})}} = \cos (\dfrac{\pi }{{{3^r}}}) - i\sin (\dfrac{\pi }{{{3^r}}})$ ……..(2)
From (1) and (2)
$ \Rightarrow {x_r} = {e^{ - i(\dfrac{\pi }{{{3^r}}})}}$ …….(3)
To find the value of ${x_1}.{x_2}.{x_3}...........\infty $, we will find ${x_1},{x_2},{x_3}...........\infty $by putting value of r= 1,2,3…… respectively in equation 3 we get,
\[\]$ \Rightarrow {x_1} = {e^{ - i(\dfrac{\pi }{3})}},{x_2} = {e^{ - i(\dfrac{\pi }{{{3^2}}})}},{x_3} = {e^{ - i(\dfrac{\pi }{{{3^3}}})}}..........\infty $
Therefore, the value of ${x_1}.{x_2}.{x_3}...........\infty $i.e.
$
\Rightarrow {x_1}.{x_2}.{x_3}...........\infty = {e^{ - i(\dfrac{\pi }{3})}}.{e^{ - i(\dfrac{\pi }{{{3^2}}})}}.{e^{ - i(\dfrac{\pi }{{{3^3}}})}}..........\infty \\
\Rightarrow {x_1}.{x_2}.{x_3}...........\infty = {e^{ - i(\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + \dfrac{\pi }{{{3^3}}} + ........\infty )}} \\
$
…….(4)
As $\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + \dfrac{\pi }{{{3^3}}} + ........\infty $makes an infinite G.P with a=$\dfrac{\pi }{3}$and r=$\dfrac{1}{3}$. So, apply the formula for sum of infinite G.P i.e.
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}}$
$
\Rightarrow {S_\infty } = \dfrac{{\dfrac{\pi }{3}}}{{1 - \dfrac{1}{3}}} \\
\Rightarrow {S_\infty } = \dfrac{\pi }{{3 - 1}} = \dfrac{\pi }{2} \\
$
So, $\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + \dfrac{\pi }{{{3^3}}} + ........\infty = \dfrac{\pi }{2}$, put this value in equation 4 we get,
$ \Rightarrow {x_1}.{x_2}.{x_3}...........\infty = {e^{ - i(\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + \dfrac{\pi }{{{3^3}}} + ........\infty )}} = {e^{ - i(\dfrac{\pi }{2})}}$
$ \Rightarrow {x_1}.{x_2}.{x_3}...........\infty = \cos \dfrac{\pi }{2} - i\sin \dfrac{\pi }{2} = - i$
Hence, the correct option is C.
Note: We can also do this question by directly putting the value of r but it gets complex by using Euler’s formula, it gets easier to solve. Common mistakes done by students while applying the formula is, they directly apply the formula by mistake. They can think of it as an A.P series but there is a multiple which is common not the difference. The Euler’s formula for $\cos \theta + i\sin \theta $ is
$ \Rightarrow {e^{i\theta }} = \cos \theta + i\sin \theta $
$ \Rightarrow {e^{ - i\theta }} = \cos \theta - i\sin \theta $
After solving the equation, you will get the value of ${x_1}.{x_2}.{x_3}...........\infty $ i.e.
$ \Rightarrow {x_1}.{x_2}.{x_3}...........\infty = {e^{i(\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + .......\infty )}}$
Now apply the formula for infinite G.P as you can see $\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + .......\infty $series are in G.P and the formula for sum of G.P is given by
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}}$, where a is first term and r is common multiple.
Complete step-by-step answer:
In this question, an equation is given i.e.
\[ \Rightarrow {x_r} = \cos (\dfrac{\pi }{{{3^r}}}) - i\sin (\dfrac{\pi }{{{3^r}}})\] ……..(1)
Let’s start with solving this equation by equating it with Euler’s formula we get,
$ \Rightarrow {e^{ - i\theta }} = \cos \theta - i\sin \theta $
$ \Rightarrow {e^{ - i(\dfrac{\pi }{{{3^r}}})}} = \cos (\dfrac{\pi }{{{3^r}}}) - i\sin (\dfrac{\pi }{{{3^r}}})$ ……..(2)
From (1) and (2)
$ \Rightarrow {x_r} = {e^{ - i(\dfrac{\pi }{{{3^r}}})}}$ …….(3)
To find the value of ${x_1}.{x_2}.{x_3}...........\infty $, we will find ${x_1},{x_2},{x_3}...........\infty $by putting value of r= 1,2,3…… respectively in equation 3 we get,
\[\]$ \Rightarrow {x_1} = {e^{ - i(\dfrac{\pi }{3})}},{x_2} = {e^{ - i(\dfrac{\pi }{{{3^2}}})}},{x_3} = {e^{ - i(\dfrac{\pi }{{{3^3}}})}}..........\infty $
Therefore, the value of ${x_1}.{x_2}.{x_3}...........\infty $i.e.
$
\Rightarrow {x_1}.{x_2}.{x_3}...........\infty = {e^{ - i(\dfrac{\pi }{3})}}.{e^{ - i(\dfrac{\pi }{{{3^2}}})}}.{e^{ - i(\dfrac{\pi }{{{3^3}}})}}..........\infty \\
\Rightarrow {x_1}.{x_2}.{x_3}...........\infty = {e^{ - i(\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + \dfrac{\pi }{{{3^3}}} + ........\infty )}} \\
$
…….(4)
As $\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + \dfrac{\pi }{{{3^3}}} + ........\infty $makes an infinite G.P with a=$\dfrac{\pi }{3}$and r=$\dfrac{1}{3}$. So, apply the formula for sum of infinite G.P i.e.
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}}$
$
\Rightarrow {S_\infty } = \dfrac{{\dfrac{\pi }{3}}}{{1 - \dfrac{1}{3}}} \\
\Rightarrow {S_\infty } = \dfrac{\pi }{{3 - 1}} = \dfrac{\pi }{2} \\
$
So, $\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + \dfrac{\pi }{{{3^3}}} + ........\infty = \dfrac{\pi }{2}$, put this value in equation 4 we get,
$ \Rightarrow {x_1}.{x_2}.{x_3}...........\infty = {e^{ - i(\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + \dfrac{\pi }{{{3^3}}} + ........\infty )}} = {e^{ - i(\dfrac{\pi }{2})}}$
$ \Rightarrow {x_1}.{x_2}.{x_3}...........\infty = \cos \dfrac{\pi }{2} - i\sin \dfrac{\pi }{2} = - i$
Hence, the correct option is C.
Note: We can also do this question by directly putting the value of r but it gets complex by using Euler’s formula, it gets easier to solve. Common mistakes done by students while applying the formula is, they directly apply the formula by mistake. They can think of it as an A.P series but there is a multiple which is common not the difference. The Euler’s formula for $\cos \theta + i\sin \theta $ is
$ \Rightarrow {e^{i\theta }} = \cos \theta + i\sin \theta $
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

