
If \[{x_r} = \cos (\dfrac{\pi }{{{3^r}}}) - i\sin (\dfrac{\pi }{{{3^r}}})\],(where $i = \sqrt { - 1} $) then the value of ${x_1}.{x_2}.{x_3}...........\infty $ is
A.1
B.-1
C.-$i$
D.$i$
Answer
509.4k+ views
Hint: To solve this question first of all, apply Euler’s formula given as
$ \Rightarrow {e^{ - i\theta }} = \cos \theta - i\sin \theta $
After solving the equation, you will get the value of ${x_1}.{x_2}.{x_3}...........\infty $ i.e.
$ \Rightarrow {x_1}.{x_2}.{x_3}...........\infty = {e^{i(\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + .......\infty )}}$
Now apply the formula for infinite G.P as you can see $\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + .......\infty $series are in G.P and the formula for sum of G.P is given by
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}}$, where a is first term and r is common multiple.
Complete step-by-step answer:
In this question, an equation is given i.e.
\[ \Rightarrow {x_r} = \cos (\dfrac{\pi }{{{3^r}}}) - i\sin (\dfrac{\pi }{{{3^r}}})\] ……..(1)
Let’s start with solving this equation by equating it with Euler’s formula we get,
$ \Rightarrow {e^{ - i\theta }} = \cos \theta - i\sin \theta $
$ \Rightarrow {e^{ - i(\dfrac{\pi }{{{3^r}}})}} = \cos (\dfrac{\pi }{{{3^r}}}) - i\sin (\dfrac{\pi }{{{3^r}}})$ ……..(2)
From (1) and (2)
$ \Rightarrow {x_r} = {e^{ - i(\dfrac{\pi }{{{3^r}}})}}$ …….(3)
To find the value of ${x_1}.{x_2}.{x_3}...........\infty $, we will find ${x_1},{x_2},{x_3}...........\infty $by putting value of r= 1,2,3…… respectively in equation 3 we get,
\[\]$ \Rightarrow {x_1} = {e^{ - i(\dfrac{\pi }{3})}},{x_2} = {e^{ - i(\dfrac{\pi }{{{3^2}}})}},{x_3} = {e^{ - i(\dfrac{\pi }{{{3^3}}})}}..........\infty $
Therefore, the value of ${x_1}.{x_2}.{x_3}...........\infty $i.e.
$
\Rightarrow {x_1}.{x_2}.{x_3}...........\infty = {e^{ - i(\dfrac{\pi }{3})}}.{e^{ - i(\dfrac{\pi }{{{3^2}}})}}.{e^{ - i(\dfrac{\pi }{{{3^3}}})}}..........\infty \\
\Rightarrow {x_1}.{x_2}.{x_3}...........\infty = {e^{ - i(\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + \dfrac{\pi }{{{3^3}}} + ........\infty )}} \\
$
…….(4)
As $\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + \dfrac{\pi }{{{3^3}}} + ........\infty $makes an infinite G.P with a=$\dfrac{\pi }{3}$and r=$\dfrac{1}{3}$. So, apply the formula for sum of infinite G.P i.e.
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}}$
$
\Rightarrow {S_\infty } = \dfrac{{\dfrac{\pi }{3}}}{{1 - \dfrac{1}{3}}} \\
\Rightarrow {S_\infty } = \dfrac{\pi }{{3 - 1}} = \dfrac{\pi }{2} \\
$
So, $\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + \dfrac{\pi }{{{3^3}}} + ........\infty = \dfrac{\pi }{2}$, put this value in equation 4 we get,
$ \Rightarrow {x_1}.{x_2}.{x_3}...........\infty = {e^{ - i(\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + \dfrac{\pi }{{{3^3}}} + ........\infty )}} = {e^{ - i(\dfrac{\pi }{2})}}$
$ \Rightarrow {x_1}.{x_2}.{x_3}...........\infty = \cos \dfrac{\pi }{2} - i\sin \dfrac{\pi }{2} = - i$
Hence, the correct option is C.
Note: We can also do this question by directly putting the value of r but it gets complex by using Euler’s formula, it gets easier to solve. Common mistakes done by students while applying the formula is, they directly apply the formula by mistake. They can think of it as an A.P series but there is a multiple which is common not the difference. The Euler’s formula for $\cos \theta + i\sin \theta $ is
$ \Rightarrow {e^{i\theta }} = \cos \theta + i\sin \theta $
$ \Rightarrow {e^{ - i\theta }} = \cos \theta - i\sin \theta $
After solving the equation, you will get the value of ${x_1}.{x_2}.{x_3}...........\infty $ i.e.
$ \Rightarrow {x_1}.{x_2}.{x_3}...........\infty = {e^{i(\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + .......\infty )}}$
Now apply the formula for infinite G.P as you can see $\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + .......\infty $series are in G.P and the formula for sum of G.P is given by
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}}$, where a is first term and r is common multiple.
Complete step-by-step answer:
In this question, an equation is given i.e.
\[ \Rightarrow {x_r} = \cos (\dfrac{\pi }{{{3^r}}}) - i\sin (\dfrac{\pi }{{{3^r}}})\] ……..(1)
Let’s start with solving this equation by equating it with Euler’s formula we get,
$ \Rightarrow {e^{ - i\theta }} = \cos \theta - i\sin \theta $
$ \Rightarrow {e^{ - i(\dfrac{\pi }{{{3^r}}})}} = \cos (\dfrac{\pi }{{{3^r}}}) - i\sin (\dfrac{\pi }{{{3^r}}})$ ……..(2)
From (1) and (2)
$ \Rightarrow {x_r} = {e^{ - i(\dfrac{\pi }{{{3^r}}})}}$ …….(3)
To find the value of ${x_1}.{x_2}.{x_3}...........\infty $, we will find ${x_1},{x_2},{x_3}...........\infty $by putting value of r= 1,2,3…… respectively in equation 3 we get,
\[\]$ \Rightarrow {x_1} = {e^{ - i(\dfrac{\pi }{3})}},{x_2} = {e^{ - i(\dfrac{\pi }{{{3^2}}})}},{x_3} = {e^{ - i(\dfrac{\pi }{{{3^3}}})}}..........\infty $
Therefore, the value of ${x_1}.{x_2}.{x_3}...........\infty $i.e.
$
\Rightarrow {x_1}.{x_2}.{x_3}...........\infty = {e^{ - i(\dfrac{\pi }{3})}}.{e^{ - i(\dfrac{\pi }{{{3^2}}})}}.{e^{ - i(\dfrac{\pi }{{{3^3}}})}}..........\infty \\
\Rightarrow {x_1}.{x_2}.{x_3}...........\infty = {e^{ - i(\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + \dfrac{\pi }{{{3^3}}} + ........\infty )}} \\
$
…….(4)
As $\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + \dfrac{\pi }{{{3^3}}} + ........\infty $makes an infinite G.P with a=$\dfrac{\pi }{3}$and r=$\dfrac{1}{3}$. So, apply the formula for sum of infinite G.P i.e.
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}}$
$
\Rightarrow {S_\infty } = \dfrac{{\dfrac{\pi }{3}}}{{1 - \dfrac{1}{3}}} \\
\Rightarrow {S_\infty } = \dfrac{\pi }{{3 - 1}} = \dfrac{\pi }{2} \\
$
So, $\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + \dfrac{\pi }{{{3^3}}} + ........\infty = \dfrac{\pi }{2}$, put this value in equation 4 we get,
$ \Rightarrow {x_1}.{x_2}.{x_3}...........\infty = {e^{ - i(\dfrac{\pi }{3} + \dfrac{\pi }{{{3^2}}} + \dfrac{\pi }{{{3^3}}} + ........\infty )}} = {e^{ - i(\dfrac{\pi }{2})}}$
$ \Rightarrow {x_1}.{x_2}.{x_3}...........\infty = \cos \dfrac{\pi }{2} - i\sin \dfrac{\pi }{2} = - i$
Hence, the correct option is C.
Note: We can also do this question by directly putting the value of r but it gets complex by using Euler’s formula, it gets easier to solve. Common mistakes done by students while applying the formula is, they directly apply the formula by mistake. They can think of it as an A.P series but there is a multiple which is common not the difference. The Euler’s formula for $\cos \theta + i\sin \theta $ is
$ \Rightarrow {e^{i\theta }} = \cos \theta + i\sin \theta $
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which of the following is nitrogenfixing algae a Nostoc class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
