
If \[{x_n} = \cos \left( {\dfrac{\pi }{{{2^n}}}} \right) + i\sin \left( {\dfrac{\pi }{{{2^n}}}} \right),\] then \[{x_1}.{x_2}.{x_3}..........\infty \] is equal to_________
Answer
505.5k+ views
Hint: We solve this by putting the values of n in the given equation. We use the relations between cosine, sine and exponential function \[{e^{i\theta }} = \cos \theta + i\sin \theta \] . Which is also known as Euler’s formula in complex analysis. Using this find the value of \[{x_1}\] , \[{x_2}\] , \[{x_3}\] …. and substituting in \[{x_1}.{x_2}.{x_3}..........\infty \] we get the required value.
Complete step-by-step answer:
Now, given \[{x_n} = \cos \left( {\dfrac{\pi }{{{2^n}}}} \right) + i\sin \left( {\dfrac{\pi }{{{2^n}}}} \right)\] . ---- (1) and \[{x_1}.{x_2}.{x_3} - - - - \infty \] ----- (2)
To find the values of \[{x_1}\] , \[{x_2}\] , \[{x_3}\] ….
Put \[n = 1\] in equation (1) we get:
\[ \Rightarrow {x_1} = \cos \left( {\dfrac{\pi }{{{2^1}}}} \right) + i\sin \left( {\dfrac{\pi }{{{2^1}}}} \right)\]
On the right hand side, Comparing with \[{e^{i\theta }} = \cos \theta + i\sin \theta \] .
\[ \Rightarrow {x_1} = {e^{i\left( {\dfrac{\pi }{2}} \right)}}\]
Put \[n = 2\] in equation (1) we get:
\[ \Rightarrow {x_2} = \cos \left( {\dfrac{\pi }{{{2^2}}}} \right) + i\sin \left( {\dfrac{\pi }{{{2^2}}}} \right)\]
\[ \Rightarrow {x_2} = \cos \left( {\dfrac{\pi }{4}} \right) + i\sin \left( {\dfrac{\pi }{4}} \right)\]
On the right hand side, Comparing with \[{e^{i\theta }} = \cos \theta + i\sin \theta \] .
\[ \Rightarrow {x_2} = {e^{i\left( {\dfrac{\pi }{4}} \right)}}\]
Put \[n = 3\] in equation (3) we get:
\[ \Rightarrow {x_3} = \cos \left( {\dfrac{\pi }{{{2^3}}}} \right) + i\sin \left( {\dfrac{\pi }{{{2^3}}}} \right)\]
\[ \Rightarrow {x_3} = \cos \left( {\dfrac{\pi }{8}} \right) + i\sin \left( {\dfrac{\pi }{8}} \right)\]
On the right hand side, Comparing with \[{e^{i\theta }} = \cos \theta + i\sin \theta \] .
\[ \Rightarrow {x_3} = {e^{i\left( {\dfrac{\pi }{8}} \right)}}\]
Continuing like this and substituting in equation (2), we get:
\[{x_1}.{x_2}.{x_3}..........\infty = {e^{i\left( {\dfrac{\pi }{2}} \right)}}.{e^{i\left( {\dfrac{\pi }{4}} \right)}}.{e^{i\left( {\dfrac{\pi }{8}} \right)}} - - - - \infty \]
Since the base is same on the right hand side we can add the exponent’s term, we get:
Taking \[i\] as a common, we get:
\[ = {e^{i\left( {\left( {\dfrac{\pi }{2}} \right) + \left( {\dfrac{\pi }{4}} \right) + \left( {\dfrac{\pi }{8}} \right) + - - - - \infty } \right)}}\]
Taking \[\pi \] as common, we get:
\[ = {e^{i\pi \left( {\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + - - - - - - } \right)}}\]
We know that \[\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + - - - - - = \sum\limits_{n = 1}^\infty {{{\left( {\dfrac{1}{2}} \right)}^n}} \]
Also,
\[\sum\limits_{n = 1}^\infty {{{\left( {\dfrac{1}{2}} \right)}^n}} = \dfrac{{\dfrac{1}{2}}}{{1 - \dfrac{1}{2}}} = 1\] (Taking L.C.M and simplifying)
\[ = {e^{i\pi \left[ {\dfrac{{\dfrac{1}{2}}}{{1 - \dfrac{1}{2}}}} \right] }}\]
\[ = {e^{i\pi }}\]
We know from Euler’s formula that \[{e^{i\theta }} = \cos \theta + i\sin \theta \] . Comparing and we get,
\[ = \cos \pi + i\sin \pi \]
We know the values of \[\sin \pi = 0\] and \[\cos \pi = - 1\] .
Substituting in above we get,
\[ = - 1\]
Hence, the value of \[{x_1}.{x_2}.{x_3} - - - - \infty = - 1\] .
So, the correct answer is “-1”.
Note: All we did is find the values of \[{x_1}.{x_2}\] and \[{x_3}\] using the Euler’s formula. Substitute this in equation in (2), we get the required value. Remember this \[{e^{i\theta }} = \cos \theta + i\sin \theta \] well. We used the basic exponent and power formula \[{e^a}.{e^b}.{e^c} = {e^{a + b + c}}\] . Since the base is the same we can add the exponent. We express cosine and sine in terms of \[e\] . Just be careful in the substituting and calculation part. The calculation part might be difficult.
Complete step-by-step answer:
Now, given \[{x_n} = \cos \left( {\dfrac{\pi }{{{2^n}}}} \right) + i\sin \left( {\dfrac{\pi }{{{2^n}}}} \right)\] . ---- (1) and \[{x_1}.{x_2}.{x_3} - - - - \infty \] ----- (2)
To find the values of \[{x_1}\] , \[{x_2}\] , \[{x_3}\] ….
Put \[n = 1\] in equation (1) we get:
\[ \Rightarrow {x_1} = \cos \left( {\dfrac{\pi }{{{2^1}}}} \right) + i\sin \left( {\dfrac{\pi }{{{2^1}}}} \right)\]
On the right hand side, Comparing with \[{e^{i\theta }} = \cos \theta + i\sin \theta \] .
\[ \Rightarrow {x_1} = {e^{i\left( {\dfrac{\pi }{2}} \right)}}\]
Put \[n = 2\] in equation (1) we get:
\[ \Rightarrow {x_2} = \cos \left( {\dfrac{\pi }{{{2^2}}}} \right) + i\sin \left( {\dfrac{\pi }{{{2^2}}}} \right)\]
\[ \Rightarrow {x_2} = \cos \left( {\dfrac{\pi }{4}} \right) + i\sin \left( {\dfrac{\pi }{4}} \right)\]
On the right hand side, Comparing with \[{e^{i\theta }} = \cos \theta + i\sin \theta \] .
\[ \Rightarrow {x_2} = {e^{i\left( {\dfrac{\pi }{4}} \right)}}\]
Put \[n = 3\] in equation (3) we get:
\[ \Rightarrow {x_3} = \cos \left( {\dfrac{\pi }{{{2^3}}}} \right) + i\sin \left( {\dfrac{\pi }{{{2^3}}}} \right)\]
\[ \Rightarrow {x_3} = \cos \left( {\dfrac{\pi }{8}} \right) + i\sin \left( {\dfrac{\pi }{8}} \right)\]
On the right hand side, Comparing with \[{e^{i\theta }} = \cos \theta + i\sin \theta \] .
\[ \Rightarrow {x_3} = {e^{i\left( {\dfrac{\pi }{8}} \right)}}\]
Continuing like this and substituting in equation (2), we get:
\[{x_1}.{x_2}.{x_3}..........\infty = {e^{i\left( {\dfrac{\pi }{2}} \right)}}.{e^{i\left( {\dfrac{\pi }{4}} \right)}}.{e^{i\left( {\dfrac{\pi }{8}} \right)}} - - - - \infty \]
Since the base is same on the right hand side we can add the exponent’s term, we get:
Taking \[i\] as a common, we get:
\[ = {e^{i\left( {\left( {\dfrac{\pi }{2}} \right) + \left( {\dfrac{\pi }{4}} \right) + \left( {\dfrac{\pi }{8}} \right) + - - - - \infty } \right)}}\]
Taking \[\pi \] as common, we get:
\[ = {e^{i\pi \left( {\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + - - - - - - } \right)}}\]
We know that \[\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + - - - - - = \sum\limits_{n = 1}^\infty {{{\left( {\dfrac{1}{2}} \right)}^n}} \]
Also,
\[\sum\limits_{n = 1}^\infty {{{\left( {\dfrac{1}{2}} \right)}^n}} = \dfrac{{\dfrac{1}{2}}}{{1 - \dfrac{1}{2}}} = 1\] (Taking L.C.M and simplifying)
\[ = {e^{i\pi \left[ {\dfrac{{\dfrac{1}{2}}}{{1 - \dfrac{1}{2}}}} \right] }}\]
\[ = {e^{i\pi }}\]
We know from Euler’s formula that \[{e^{i\theta }} = \cos \theta + i\sin \theta \] . Comparing and we get,
\[ = \cos \pi + i\sin \pi \]
We know the values of \[\sin \pi = 0\] and \[\cos \pi = - 1\] .
Substituting in above we get,
\[ = - 1\]
Hence, the value of \[{x_1}.{x_2}.{x_3} - - - - \infty = - 1\] .
So, the correct answer is “-1”.
Note: All we did is find the values of \[{x_1}.{x_2}\] and \[{x_3}\] using the Euler’s formula. Substitute this in equation in (2), we get the required value. Remember this \[{e^{i\theta }} = \cos \theta + i\sin \theta \] well. We used the basic exponent and power formula \[{e^a}.{e^b}.{e^c} = {e^{a + b + c}}\] . Since the base is the same we can add the exponent. We express cosine and sine in terms of \[e\] . Just be careful in the substituting and calculation part. The calculation part might be difficult.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
At which age domestication of animals started A Neolithic class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Whales are warmblooded animals which live in cold seas class 11 biology CBSE

When a body is charged its mass A Increase B Decrease class 11 physics CBSE

The process in which gas transform into solid is called class 11 chemistry CBSE
