If $x=a{{t}^{2}},y=2at$, then find the value of $\dfrac{dy}{dx}$.
Answer
381.3k+ views
Hint: First find the derivative of ‘x’ and ‘y’ with respect to ‘t’ and then use the formula \[\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}\] to find the derivative of ‘y’ with respect to ‘x’.
Complete step-by-step answer:
To find the derivative of ‘y’ with respect to ‘x’ we will write the given equations first,
$x=a{{t}^{2}},y=2at$
As ‘y’ and ‘x’ are defined in the form of an independent parameter ‘t’ therefore we have to use the method to find derivatives of parametric form.
For that we have to take the derivatives of ‘x’ and ‘y’ with respect to‘t’ so that we can get the $\dfrac{dy}{dx}$ by using a simple formula.
Therefore we will first find the derivative of ‘x’ with respect to ‘t’
$x=a{{t}^{2}}$
Differentiating above equation with respect to ‘t’ we will get,
$\therefore \dfrac{dx}{dt}=\dfrac{d}{dt}\left( a{{t}^{2}} \right)$
As ‘a’ is a constant therefore we can take it outside the derivative, therefore we will get,
$\therefore \dfrac{dx}{dt}=a\times \dfrac{d}{dt}\left( {{t}^{2}} \right)$ ……………………………. (1)
To proceed further in the solution we should know the formula given below,
Formula:
$\dfrac{d}{dx}\left( {{x}^{n}} \right)=n\times {{x}^{n-1}}$
By using the formula given above we can write the equation (1) as,
$\therefore \dfrac{dx}{dt}=a\times \left( 2{{t}^{2-1}} \right)$
$\therefore \dfrac{dx}{dt}=a\times \left( 2t \right)$
$\therefore \dfrac{dx}{dt}=2at$ ……………………………….. (2)
Now we will first find the derivative of ‘y’ with respect to ‘t’
$y=2at$
Differentiating above equation with respect to ‘t’ we will get,
$\therefore \dfrac{dy}{dt}=\dfrac{d}{dt}\left( 2at \right)$
As ‘2a’ is a constant therefore we can take it outside the derivative, therefore we will get,
$\therefore \dfrac{dy}{dt}=2a\times \dfrac{d}{dt}\left( t \right)$ ……………………………. (3)
To proceed further in the solution we should know the formula given below,
Formula:
$\dfrac{d}{dx}\left( x \right)=1$
By using the formula given above we can write the equation (3) as,
$\therefore \dfrac{dy}{dt}=2a\times \left( 1 \right)$
$\therefore \dfrac{dy}{dt}=2a$……………………………….. (4)
Now, to find the derivative of ‘y’ with respect to ‘x’ we should know the formula given below,
Formula:
If ‘x’ and ‘y’ are functions of an independent parameter ‘t’ then, derivative of ‘y’ with respect to ‘x’ can be given as,
\[\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}\]
If we put the values of equation (2) and equation (4) in above formula we will get,
\[\therefore \dfrac{dy}{dx}=\dfrac{2a}{2at}\]
By cancelling ‘2a’ from the numerator and denominator of the right hand side of the above equation we will get,
\[\therefore \dfrac{dy}{dx}=\dfrac{1}{t}\]
Therefore the value of $\dfrac{dy}{dx}$ is equal to \[\dfrac{1}{t}\].
Note: Don’t use the formula \[\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}\] directly as it will complicate the solution. First calculate the values separately and then put them in formula for simplicity.
Complete step-by-step answer:
To find the derivative of ‘y’ with respect to ‘x’ we will write the given equations first,
$x=a{{t}^{2}},y=2at$
As ‘y’ and ‘x’ are defined in the form of an independent parameter ‘t’ therefore we have to use the method to find derivatives of parametric form.
For that we have to take the derivatives of ‘x’ and ‘y’ with respect to‘t’ so that we can get the $\dfrac{dy}{dx}$ by using a simple formula.
Therefore we will first find the derivative of ‘x’ with respect to ‘t’
$x=a{{t}^{2}}$
Differentiating above equation with respect to ‘t’ we will get,
$\therefore \dfrac{dx}{dt}=\dfrac{d}{dt}\left( a{{t}^{2}} \right)$
As ‘a’ is a constant therefore we can take it outside the derivative, therefore we will get,
$\therefore \dfrac{dx}{dt}=a\times \dfrac{d}{dt}\left( {{t}^{2}} \right)$ ……………………………. (1)
To proceed further in the solution we should know the formula given below,
Formula:
$\dfrac{d}{dx}\left( {{x}^{n}} \right)=n\times {{x}^{n-1}}$
By using the formula given above we can write the equation (1) as,
$\therefore \dfrac{dx}{dt}=a\times \left( 2{{t}^{2-1}} \right)$
$\therefore \dfrac{dx}{dt}=a\times \left( 2t \right)$
$\therefore \dfrac{dx}{dt}=2at$ ……………………………….. (2)
Now we will first find the derivative of ‘y’ with respect to ‘t’
$y=2at$
Differentiating above equation with respect to ‘t’ we will get,
$\therefore \dfrac{dy}{dt}=\dfrac{d}{dt}\left( 2at \right)$
As ‘2a’ is a constant therefore we can take it outside the derivative, therefore we will get,
$\therefore \dfrac{dy}{dt}=2a\times \dfrac{d}{dt}\left( t \right)$ ……………………………. (3)
To proceed further in the solution we should know the formula given below,
Formula:
$\dfrac{d}{dx}\left( x \right)=1$
By using the formula given above we can write the equation (3) as,
$\therefore \dfrac{dy}{dt}=2a\times \left( 1 \right)$
$\therefore \dfrac{dy}{dt}=2a$……………………………….. (4)
Now, to find the derivative of ‘y’ with respect to ‘x’ we should know the formula given below,
Formula:
If ‘x’ and ‘y’ are functions of an independent parameter ‘t’ then, derivative of ‘y’ with respect to ‘x’ can be given as,
\[\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}\]
If we put the values of equation (2) and equation (4) in above formula we will get,
\[\therefore \dfrac{dy}{dx}=\dfrac{2a}{2at}\]
By cancelling ‘2a’ from the numerator and denominator of the right hand side of the above equation we will get,
\[\therefore \dfrac{dy}{dx}=\dfrac{1}{t}\]
Therefore the value of $\dfrac{dy}{dx}$ is equal to \[\dfrac{1}{t}\].
Note: Don’t use the formula \[\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}\] directly as it will complicate the solution. First calculate the values separately and then put them in formula for simplicity.
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
Which country launched the first satellite in space class 11 physics CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE
