
If ${{x}^{3}}+{{y}^{3}}-3axy=0$, then prove that \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2{{a}^{2}}xy}{{{\left( ax-{{y}^{2}} \right)}^{3}}}\].
Answer
612.9k+ views
Hint: We have an implicit function $\left\{ \text{function in the form }\phi \left( x,y \right)=0 \right\}$. To find $\dfrac{dy}{dx}$ here in the case of implicit function, we differentiate each term with the respect to x regarding y as a function of x and then collect terms in $\dfrac{dy}{dx}$ together on one side to finally get $\dfrac{dy}{dx}$.
After getting $\dfrac{dy}{dx}$, we will differentiate the equation with respect to x, regarding y and $\dfrac{dy}{dx}$ as a function of x and then collect terms in \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\] together on one side to finally get \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\].
Complete step-by-step answer:
We have given,
${{x}^{3}}+{{y}^{3}}-3axy=0$
We will differentiate the above expression with respect to x.
On differentiating with respect to x, we get,
\[\begin{align}
& \dfrac{d}{dx}\left\{ {{x}^{3}}+{{y}^{3}}-3axy \right\}=\dfrac{d\left( 0 \right)}{dx} \\
& \Rightarrow \dfrac{d\left( {{x}^{3}} \right)}{dx}+\dfrac{d\left( {{y}^{3}} \right)}{dx}-\dfrac{d\left( 3axy \right)}{dx}=0 \\
& \left( \text{since, derivative of constant term is always zero} \right) \\
& \Rightarrow 3{{x}^{2}}+3{{y}^{2}}.\dfrac{dy}{dx}-3a\dfrac{d\left( xy \right)}{dx}=0 \\
& \left( \text{since, }\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}} \right) \\
\end{align}\]
$\Rightarrow $and to find $\dfrac{d\left( {{y}^{3}} \right)}{dx}$, we are applying chain rule of differentiation here.
$\begin{align}
& \Rightarrow 3{{x}^{2}}+3{{y}^{2}}.\dfrac{dy}{dx}-3a\left[ \dfrac{d\left( x \right)}{dx}.y+x.\dfrac{d\left( y \right)}{dx} \right]=0 \\
& \left( \text{Applying product rule of differentiation i}\text{.e}\text{. }\dfrac{d\left( AB \right)}{dx}=\dfrac{dA}{dx}.B+\dfrac{dB}{dx}.A \right) \\
& \Rightarrow 3{{x}^{2}}+3{{y}^{2}}.\dfrac{dy}{dx}-3a\left[ 1\times y+x.\dfrac{dy}{dx} \right]=0 \\
& \Rightarrow 3{{x}^{2}}+3{{y}^{2}}.\dfrac{dy}{dx}-3ay-3ax.\dfrac{dy}{dx}=0 \\
\end{align}$
(On expanding the terms of bracket)
Now, collecting terms in $\dfrac{dy}{dx}$ together on one side, we get,
$\begin{align}
& \Rightarrow 3{{x}^{2}}-3ay+3{{y}^{2}}\dfrac{dy}{dx}-3ax\dfrac{dy}{dx}=0 \\
& \Rightarrow 3{{x}^{2}}-3ay+\dfrac{dy}{dx}\left( 3{{y}^{2}}-3ax \right)=0 \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{\left( 3{{x}^{2}}-3ay \right)}{\left( 3{{y}^{2}}-3ax \right)} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{3ay-3{{x}^{2}}}{3{{y}^{2}}-3ax}=\dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax}.............\left( 1 \right) \\
\end{align}$
(Taking 3 common from numerator and denominator and canceling it.)
Again we differentiate equation (1), with respect to x.
On differentiating equation (1) both sides,
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left\{ \dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax} \right\}\]
$\Rightarrow $To differentiate right hand side, we will apply the quotient rule of differentiation,
i.e. $\dfrac{d}{dx}\left( \dfrac{f}{g} \right)=\dfrac{g\left( \dfrac{df}{dx} \right)-f\left( \dfrac{dg}{dx} \right)}{{{g}^{2}}}$
Where $g\ne 0$
Therefore,
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\dfrac{d}{dx}\left( ay-{{x}^{2}} \right)-\left( ay-{{x}^{2}} \right)\dfrac{d}{dx}\left\{ {{y}^{2}}-ax \right\}}{{{\left( {{y}^{2}}-ax \right)}^{2}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\left\{ a.\left( \dfrac{dy}{dx} \right).\dfrac{d\left( {{x}^{2}} \right)}{dx} \right\}-\left( ay-{{x}^{2}} \right)\left\{ \dfrac{d\left( {{y}^{2}} \right)}{dx}-a\dfrac{d\left( x \right)}{dx} \right\}}{{{\left( {{y}^{2}}-ax \right)}^{2}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\left\{ \dfrac{ady}{dx}-2x \right\}-\left( ay-{{x}^{2}} \right)\left\{ 2y.\dfrac{dy}{dx}-a \right\}}{{{\left( {{y}^{2}}-ax \right)}^{2}}}..........\left( 2 \right) \\
\end{align}\]
Taking a (constant) outside from differentiation and using $\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}$.
To differentiate terms containing y, we will differentiate the terms using chain rule of differentiation.
From equation (1), we have,
$\dfrac{dy}{dx}=\dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax}$
Putting this value of $\dfrac{dy}{dx}$ in equation (2), we will get,
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\left\{ a\left( \dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax} \right)-2x \right\}-\left( ay-{{x}^{2}} \right)\left\{ 2y\left( \dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax} \right)-a \right\}}{{{\left( {{y}^{2}}-ax \right)}^{2}}} \\
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\left\{ \dfrac{{{a}^{2}}y-a{{x}^{2}}-2x\left( {{y}^{2}}-ax \right)}{\left( {{y}^{2}}-ax \right)} \right\}-\left( ay-{{x}^{2}} \right)\left\{ \dfrac{2a{{y}^{2}}-2y{{x}^{2}}-a\left( {{y}^{2}}-ax \right)}{\left( {{y}^{2}}-ax \right)} \right\}}{{{\left( {{y}^{2}}-ax \right)}^{2}}} \\
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{a}^{2}}y-a{{x}^{2}}-2x{{y}^{2}}+2a{{x}^{2}} \right)-\left( ay-{{x}^{2}} \right)\left( \dfrac{2a{{y}^{2}}-2y{{x}^{2}}-a{{y}^{2}}+{{a}^{2}}x}{{{y}^{2}}-ax} \right)}{{{\left( {{y}^{2}}-ax \right)}^{2}}} \\
& \Rightarrow \dfrac{\left( {{a}^{2}}y+a{{x}^{2}}-2x{{y}^{2}} \right)\left( {{y}^{2}}-ax \right)-\left( ay-{{x}^{2}} \right)\left( a{{y}^{2}}-2{{x}^{2}}y+{{a}^{2}}x \right)}{{{\left( {{y}^{2}}-ax \right)}^{3}}} \\
& \Rightarrow \dfrac{{{a}^{2}}{{y}^{3}}-{{a}^{3}}xy+a{{x}^{2}}{{y}^{2}}-{{a}^{2}}{{x}^{3}}-2x{{y}^{4}}+2a{{x}^{2}}{{y}^{2}}-\left( a{{y}^{2}}-2{{x}^{2}}y+{{a}^{2}}x \right)\left( ay-{{x}^{2}} \right)}{{{\left( {{y}^{2}}-ax \right)}^{3}}} \\
& \Rightarrow \dfrac{{{a}^{2}}{{y}^{3}}-{{a}^{3}}yx+3a{{x}^{2}}{{y}^{2}}-{{a}^{2}}{{x}^{3}}-2x{{y}^{4}}-{{a}^{2}}{{y}^{3}}+a{{x}^{2}}{{y}^{2}}+2a{{x}^{2}}{{y}^{2}}-2{{x}^{4}}y-{{a}^{3}}xy+{{a}^{2}}{{x}^{3}}}{{{\left( {{y}^{2}}-ax \right)}^{3}}} \\
\end{align}\]
$\Rightarrow $Cancelling the terms having equal positive and negative values.
\[\begin{align}
& \Rightarrow \dfrac{6a{{x}^{2}}{{y}^{2}}-2x{{y}^{4}}-2{{x}^{4}}y-2{{a}^{3}}xy}{{{\left( {{y}^{2}}-ax \right)}^{3}}} \\
& \Rightarrow \dfrac{-2xy\left( {{x}^{3}}+{{y}^{3}}+{{a}^{3}}-3axy \right)}{{{\left( {{y}^{2}}-ax \right)}^{3}}} \\
& \Rightarrow \dfrac{-2xy\left\{ \left( {{x}^{3}}+{{y}^{3}}-3axy \right)+{{a}^{3}} \right\}}{{{\left( {{y}^{2}}-ax \right)}^{3}}} \\
& \Rightarrow \dfrac{-2xy\left( 0+{{a}^{3}} \right)}{{{\left( {{y}^{2}}-ax \right)}^{3}}}\text{, since it is given that }{{x}^{3}}+{{y}^{3}}-3axy=0 \\
& \Rightarrow \dfrac{-2xy{{a}^{3}}}{{{\left( {{y}^{2}}-ax \right)}^{3}}}=\dfrac{2xy{{a}^{3}}}{{{\left( ax-{{y}^{2}} \right)}^{3}}}=\text{Right Hand Side} \\
\end{align}\]
Note: In this question, we have given an implicit function $\left\{ \text{function in the form }\phi \left( x,y \right)=0 \right\}$. Here students can make mistakes by starting with solving for y and then finding $\dfrac{dy}{dx}$.
But, the correct method to find $\dfrac{dy}{dx}$ in this question is by differentiating each term with respect to x, regarding y as a function of x and the collecting terms in $\dfrac{dy}{dx}$ together on one side.
After getting $\dfrac{dy}{dx}$, we will differentiate the equation with respect to x, regarding y and $\dfrac{dy}{dx}$ as a function of x and then collect terms in \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\] together on one side to finally get \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\].
Complete step-by-step answer:
We have given,
${{x}^{3}}+{{y}^{3}}-3axy=0$
We will differentiate the above expression with respect to x.
On differentiating with respect to x, we get,
\[\begin{align}
& \dfrac{d}{dx}\left\{ {{x}^{3}}+{{y}^{3}}-3axy \right\}=\dfrac{d\left( 0 \right)}{dx} \\
& \Rightarrow \dfrac{d\left( {{x}^{3}} \right)}{dx}+\dfrac{d\left( {{y}^{3}} \right)}{dx}-\dfrac{d\left( 3axy \right)}{dx}=0 \\
& \left( \text{since, derivative of constant term is always zero} \right) \\
& \Rightarrow 3{{x}^{2}}+3{{y}^{2}}.\dfrac{dy}{dx}-3a\dfrac{d\left( xy \right)}{dx}=0 \\
& \left( \text{since, }\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}} \right) \\
\end{align}\]
$\Rightarrow $and to find $\dfrac{d\left( {{y}^{3}} \right)}{dx}$, we are applying chain rule of differentiation here.
$\begin{align}
& \Rightarrow 3{{x}^{2}}+3{{y}^{2}}.\dfrac{dy}{dx}-3a\left[ \dfrac{d\left( x \right)}{dx}.y+x.\dfrac{d\left( y \right)}{dx} \right]=0 \\
& \left( \text{Applying product rule of differentiation i}\text{.e}\text{. }\dfrac{d\left( AB \right)}{dx}=\dfrac{dA}{dx}.B+\dfrac{dB}{dx}.A \right) \\
& \Rightarrow 3{{x}^{2}}+3{{y}^{2}}.\dfrac{dy}{dx}-3a\left[ 1\times y+x.\dfrac{dy}{dx} \right]=0 \\
& \Rightarrow 3{{x}^{2}}+3{{y}^{2}}.\dfrac{dy}{dx}-3ay-3ax.\dfrac{dy}{dx}=0 \\
\end{align}$
(On expanding the terms of bracket)
Now, collecting terms in $\dfrac{dy}{dx}$ together on one side, we get,
$\begin{align}
& \Rightarrow 3{{x}^{2}}-3ay+3{{y}^{2}}\dfrac{dy}{dx}-3ax\dfrac{dy}{dx}=0 \\
& \Rightarrow 3{{x}^{2}}-3ay+\dfrac{dy}{dx}\left( 3{{y}^{2}}-3ax \right)=0 \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{\left( 3{{x}^{2}}-3ay \right)}{\left( 3{{y}^{2}}-3ax \right)} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{3ay-3{{x}^{2}}}{3{{y}^{2}}-3ax}=\dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax}.............\left( 1 \right) \\
\end{align}$
(Taking 3 common from numerator and denominator and canceling it.)
Again we differentiate equation (1), with respect to x.
On differentiating equation (1) both sides,
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left\{ \dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax} \right\}\]
$\Rightarrow $To differentiate right hand side, we will apply the quotient rule of differentiation,
i.e. $\dfrac{d}{dx}\left( \dfrac{f}{g} \right)=\dfrac{g\left( \dfrac{df}{dx} \right)-f\left( \dfrac{dg}{dx} \right)}{{{g}^{2}}}$
Where $g\ne 0$
Therefore,
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\dfrac{d}{dx}\left( ay-{{x}^{2}} \right)-\left( ay-{{x}^{2}} \right)\dfrac{d}{dx}\left\{ {{y}^{2}}-ax \right\}}{{{\left( {{y}^{2}}-ax \right)}^{2}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\left\{ a.\left( \dfrac{dy}{dx} \right).\dfrac{d\left( {{x}^{2}} \right)}{dx} \right\}-\left( ay-{{x}^{2}} \right)\left\{ \dfrac{d\left( {{y}^{2}} \right)}{dx}-a\dfrac{d\left( x \right)}{dx} \right\}}{{{\left( {{y}^{2}}-ax \right)}^{2}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\left\{ \dfrac{ady}{dx}-2x \right\}-\left( ay-{{x}^{2}} \right)\left\{ 2y.\dfrac{dy}{dx}-a \right\}}{{{\left( {{y}^{2}}-ax \right)}^{2}}}..........\left( 2 \right) \\
\end{align}\]
Taking a (constant) outside from differentiation and using $\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}$.
To differentiate terms containing y, we will differentiate the terms using chain rule of differentiation.
From equation (1), we have,
$\dfrac{dy}{dx}=\dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax}$
Putting this value of $\dfrac{dy}{dx}$ in equation (2), we will get,
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\left\{ a\left( \dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax} \right)-2x \right\}-\left( ay-{{x}^{2}} \right)\left\{ 2y\left( \dfrac{ay-{{x}^{2}}}{{{y}^{2}}-ax} \right)-a \right\}}{{{\left( {{y}^{2}}-ax \right)}^{2}}} \\
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{y}^{2}}-ax \right)\left\{ \dfrac{{{a}^{2}}y-a{{x}^{2}}-2x\left( {{y}^{2}}-ax \right)}{\left( {{y}^{2}}-ax \right)} \right\}-\left( ay-{{x}^{2}} \right)\left\{ \dfrac{2a{{y}^{2}}-2y{{x}^{2}}-a\left( {{y}^{2}}-ax \right)}{\left( {{y}^{2}}-ax \right)} \right\}}{{{\left( {{y}^{2}}-ax \right)}^{2}}} \\
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{a}^{2}}y-a{{x}^{2}}-2x{{y}^{2}}+2a{{x}^{2}} \right)-\left( ay-{{x}^{2}} \right)\left( \dfrac{2a{{y}^{2}}-2y{{x}^{2}}-a{{y}^{2}}+{{a}^{2}}x}{{{y}^{2}}-ax} \right)}{{{\left( {{y}^{2}}-ax \right)}^{2}}} \\
& \Rightarrow \dfrac{\left( {{a}^{2}}y+a{{x}^{2}}-2x{{y}^{2}} \right)\left( {{y}^{2}}-ax \right)-\left( ay-{{x}^{2}} \right)\left( a{{y}^{2}}-2{{x}^{2}}y+{{a}^{2}}x \right)}{{{\left( {{y}^{2}}-ax \right)}^{3}}} \\
& \Rightarrow \dfrac{{{a}^{2}}{{y}^{3}}-{{a}^{3}}xy+a{{x}^{2}}{{y}^{2}}-{{a}^{2}}{{x}^{3}}-2x{{y}^{4}}+2a{{x}^{2}}{{y}^{2}}-\left( a{{y}^{2}}-2{{x}^{2}}y+{{a}^{2}}x \right)\left( ay-{{x}^{2}} \right)}{{{\left( {{y}^{2}}-ax \right)}^{3}}} \\
& \Rightarrow \dfrac{{{a}^{2}}{{y}^{3}}-{{a}^{3}}yx+3a{{x}^{2}}{{y}^{2}}-{{a}^{2}}{{x}^{3}}-2x{{y}^{4}}-{{a}^{2}}{{y}^{3}}+a{{x}^{2}}{{y}^{2}}+2a{{x}^{2}}{{y}^{2}}-2{{x}^{4}}y-{{a}^{3}}xy+{{a}^{2}}{{x}^{3}}}{{{\left( {{y}^{2}}-ax \right)}^{3}}} \\
\end{align}\]
$\Rightarrow $Cancelling the terms having equal positive and negative values.
\[\begin{align}
& \Rightarrow \dfrac{6a{{x}^{2}}{{y}^{2}}-2x{{y}^{4}}-2{{x}^{4}}y-2{{a}^{3}}xy}{{{\left( {{y}^{2}}-ax \right)}^{3}}} \\
& \Rightarrow \dfrac{-2xy\left( {{x}^{3}}+{{y}^{3}}+{{a}^{3}}-3axy \right)}{{{\left( {{y}^{2}}-ax \right)}^{3}}} \\
& \Rightarrow \dfrac{-2xy\left\{ \left( {{x}^{3}}+{{y}^{3}}-3axy \right)+{{a}^{3}} \right\}}{{{\left( {{y}^{2}}-ax \right)}^{3}}} \\
& \Rightarrow \dfrac{-2xy\left( 0+{{a}^{3}} \right)}{{{\left( {{y}^{2}}-ax \right)}^{3}}}\text{, since it is given that }{{x}^{3}}+{{y}^{3}}-3axy=0 \\
& \Rightarrow \dfrac{-2xy{{a}^{3}}}{{{\left( {{y}^{2}}-ax \right)}^{3}}}=\dfrac{2xy{{a}^{3}}}{{{\left( ax-{{y}^{2}} \right)}^{3}}}=\text{Right Hand Side} \\
\end{align}\]
Note: In this question, we have given an implicit function $\left\{ \text{function in the form }\phi \left( x,y \right)=0 \right\}$. Here students can make mistakes by starting with solving for y and then finding $\dfrac{dy}{dx}$.
But, the correct method to find $\dfrac{dy}{dx}$ in this question is by differentiating each term with respect to x, regarding y as a function of x and the collecting terms in $\dfrac{dy}{dx}$ together on one side.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

