
If $x$ satisfies $|x - 1| + |x - 2| + |x - 3| \geqslant 6{\text{ }}$ then prove that all number $x$ which satisfy the
above relation are given by $x \leqslant 0$ or $x \geqslant 4$
Answer
564.9k+ views
Hint: In the given question, we have given one equation for some value and the large of variable to also given. And we have to prove that all the numbers $x$ which satisfy the given equation is given by $2$ value of variable.
Complete step-by-step answer:
In the question, we are given that any variable $x$ satisfiers
$|x - 1| + |x - 2| + |x - 3| \geqslant 6.........(1)$
then from here we have to prove that all numbers $x$ which satisfies the above relation are given by $x \leqslant 0{\text{ or }}x \geqslant 4$
Firstly we substitute $x - 1,x - 2{\text{ and }}x - 3$ equal to new and hence we get there point which are
\[
x - 1 = 0{\text{ }}x - 2 = 0{\text{ }}x - 3 = 0{\text{ }} \\
{\text{ }}x = 1{\text{ }}x = 2{\text{ }}x = 3 \\
(1,2,3){\text{ }} \\
\]
Therefore change points are $(1,2,3)$
Hence the following cases are possible
$
(i){\text{ }}x < 1 \\
(ii){\text{ 1}} < x < 2 \\
(iii){\text{ 2 < }}x < 3 \\
(iv){\text{ }}x > 3 \\
$
We will solve each case one by one and verify that all numbers$x$is given by $x \leqslant 0{\text{ or }}x \geqslant 4$
In case $(i){\text{ }}x < 1$
For this $1$becomes
$ - (x - 1) - (x - 2) - (x - 3) \geqslant 6$
Which on solving given
$ - x + 1 - x + 2 - x + 3 \geqslant 6$
$ \Rightarrow - 3x + 6 \geqslant 6$
Which means $ - 3x \geqslant 6 - 6$
Or we get $ - 3x \geqslant 0$
$x \leqslant 0$
Which satisfies the condition
In case \[\left( {ii} \right)\], $1 < x < 2$
Equation $(1)$ becomes
$(x + 1) - (x - 2) - (x - 3) \geqslant 6$
$ \Rightarrow x - 1 - x - 2 - x - 3 \geqslant 6$
Which on solving given
$ - x + 4 \geqslant 6$
$ \Rightarrow - x \geqslant 2$
This implies $x \leqslant 2$
Which does not satisfy given condition
Hence no solution
In case $(iii){\text{ }}2 < x < 3$
Equation $(1)$becomes
$(x - 1) - (x - 2) - (x - 3) \geqslant 6$
\[ \Rightarrow x - 1 - x + 2 - x + 3 \geqslant 6\]
$ - x + y \geqslant 6$
Which on solving gives $ - x \geqslant 2$
Which implies $x \leqslant 2$
Which does not given condition
Hence, No solution
In case $(iv){\text{ }}x > 3$
Equation$(1)$ becomes
$p( - 1) - (n - 2) - (x - 3) \geqslant 6$
$ \Rightarrow x - 1 - x + 2 - n + 3 \geqslant 6$
Which on solving given
$x \geqslant 4$
There from loses $(i)$ and $(iv)$, all numbers $x$ which satisfy the given relations is given by $x \leqslant 0$and $x \geqslant 4$.
Note: In the question modulus functions is given which means the value of is position $|x|$ when $x > 0$ and the value of $|x|$ is negative $x$ when$x < 0$
Which means $|x| = \left\{ \begin{gathered}
+ x{\text{ for }}x > 0 \\
- x{\text{ for }}x < 0 \\
\end{gathered} \right.$
Their value of $x$ (either positive or negative defends or varies as the range of $x$ changes for greater and lesser.
Complete step-by-step answer:
In the question, we are given that any variable $x$ satisfiers
$|x - 1| + |x - 2| + |x - 3| \geqslant 6.........(1)$
then from here we have to prove that all numbers $x$ which satisfies the above relation are given by $x \leqslant 0{\text{ or }}x \geqslant 4$
Firstly we substitute $x - 1,x - 2{\text{ and }}x - 3$ equal to new and hence we get there point which are
\[
x - 1 = 0{\text{ }}x - 2 = 0{\text{ }}x - 3 = 0{\text{ }} \\
{\text{ }}x = 1{\text{ }}x = 2{\text{ }}x = 3 \\
(1,2,3){\text{ }} \\
\]
Therefore change points are $(1,2,3)$
Hence the following cases are possible
$
(i){\text{ }}x < 1 \\
(ii){\text{ 1}} < x < 2 \\
(iii){\text{ 2 < }}x < 3 \\
(iv){\text{ }}x > 3 \\
$
We will solve each case one by one and verify that all numbers$x$is given by $x \leqslant 0{\text{ or }}x \geqslant 4$
In case $(i){\text{ }}x < 1$
For this $1$becomes
$ - (x - 1) - (x - 2) - (x - 3) \geqslant 6$
Which on solving given
$ - x + 1 - x + 2 - x + 3 \geqslant 6$
$ \Rightarrow - 3x + 6 \geqslant 6$
Which means $ - 3x \geqslant 6 - 6$
Or we get $ - 3x \geqslant 0$
$x \leqslant 0$
Which satisfies the condition
In case \[\left( {ii} \right)\], $1 < x < 2$
Equation $(1)$ becomes
$(x + 1) - (x - 2) - (x - 3) \geqslant 6$
$ \Rightarrow x - 1 - x - 2 - x - 3 \geqslant 6$
Which on solving given
$ - x + 4 \geqslant 6$
$ \Rightarrow - x \geqslant 2$
This implies $x \leqslant 2$
Which does not satisfy given condition
Hence no solution
In case $(iii){\text{ }}2 < x < 3$
Equation $(1)$becomes
$(x - 1) - (x - 2) - (x - 3) \geqslant 6$
\[ \Rightarrow x - 1 - x + 2 - x + 3 \geqslant 6\]
$ - x + y \geqslant 6$
Which on solving gives $ - x \geqslant 2$
Which implies $x \leqslant 2$
Which does not given condition
Hence, No solution
In case $(iv){\text{ }}x > 3$
Equation$(1)$ becomes
$p( - 1) - (n - 2) - (x - 3) \geqslant 6$
$ \Rightarrow x - 1 - x + 2 - n + 3 \geqslant 6$
Which on solving given
$x \geqslant 4$
There from loses $(i)$ and $(iv)$, all numbers $x$ which satisfy the given relations is given by $x \leqslant 0$and $x \geqslant 4$.
Note: In the question modulus functions is given which means the value of is position $|x|$ when $x > 0$ and the value of $|x|$ is negative $x$ when$x < 0$
Which means $|x| = \left\{ \begin{gathered}
+ x{\text{ for }}x > 0 \\
- x{\text{ for }}x < 0 \\
\end{gathered} \right.$
Their value of $x$ (either positive or negative defends or varies as the range of $x$ changes for greater and lesser.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

