
If x = nπ - ${\text{ta}}{{\text{n}}^{ - 1}}$3 is a solution of the equation 12tan2x + $\dfrac{{\sqrt {10} }}{{{\text{cos x}}}}$+ 1 = 0 then
$
{\text{A}}{\text{. n is any integer}} \\
{\text{B}}{\text{. n is an even integer}} \\
{\text{C}}{\text{. n is a positive integer}} \\
{\text{D}}{\text{. n is an odd integer}} \\
$
Answer
615.3k+ views
Hint – To compute the given equation, we substitute the given value of x in the equation and solve it for n is even and n is odd and verify which comes out to be true. Therefore we determine the property of n.
Complete Step-by-Step solution:
Given Data, 12tan2x + $\dfrac{{\sqrt {10} }}{{{\text{cos x}}}}$+ 1
We put x = nπ - ${\text{ta}}{{\text{n}}^{ - 1}}$3 in this equation we get,
$ \Rightarrow 12{\text{ tan }}\left( {{\text{2n}}\pi {\text{ - 2ta}}{{\text{n}}^{ - 1}}3} \right) + \dfrac{{\sqrt {10} }}{{{\text{cos }}\left( {{\text{n}}\pi {\text{ - ta}}{{\text{n}}^{ - 1}}3} \right)}} + 1{\text{ = 0}}$
Now let n be even,
$ \Rightarrow 12{\text{ tan }}\left( {{\text{2n}}\pi {\text{ - 2ta}}{{\text{n}}^{ - 1}}3} \right) + \dfrac{{\sqrt {10} }}{{{\text{cos }}\left( {{\text{n}}\pi {\text{ - ta}}{{\text{n}}^{ - 1}}3} \right)}} + 1{\text{ = 0}}$
We know tan (nπ – θ) = -tan θ and cos (nπ – θ) = cos θ, when n is an even number
$ \Rightarrow - 12{\text{ tan }}\left( {{\text{2ta}}{{\text{n}}^{ - 1}}3} \right) + \dfrac{{\sqrt {10} }}{{{\text{cos }}\left( {{\text{ta}}{{\text{n}}^{ - 1}}3} \right)}} + 1{\text{ = 0}}$
Now we know, ${\tan ^{ - 1}}3{\text{ = 71}}{\text{.56}}^\circ $and cos 71.56° =$\dfrac{1}{{\sqrt {10} }}$, also tan (2 × 71.56°) = $ - \dfrac{3}{4}$
We get these values of tan, tan inverse and cos functions from their respective trigonometric tables.
$
\Rightarrow - 12\left( { - \dfrac{3}{4}} \right) + \dfrac{{\sqrt {10} }}{{\left( {\dfrac{1}{{\sqrt {10} }}} \right)}} + 1{\text{ = 0}} \\
\Rightarrow {\text{9 + 10 + 1 = 0}} \\
\Rightarrow {\text{20}} \ne 0 \\
$
Hence n is not an even integer.
Now let n be an odd number,
$ \Rightarrow 12{\text{ tan }}\left( {{\text{2n}}\pi {\text{ - 2ta}}{{\text{n}}^{ - 1}}3} \right) + \dfrac{{\sqrt {10} }}{{{\text{cos }}\left( {{\text{n}}\pi {\text{ - ta}}{{\text{n}}^{ - 1}}3} \right)}} + 1{\text{ = 0}}$
We know tan (nπ – θ) = tan θ and cos (nπ – θ) = -cos θ, when n is an odd number
$ \Rightarrow 12{\text{ tan }}\left( {{\text{2ta}}{{\text{n}}^{ - 1}}3} \right) + \dfrac{{\sqrt {10} }}{{{\text{ - cos }}\left( {{\text{ta}}{{\text{n}}^{ - 1}}3} \right)}} + 1{\text{ = 0}}$
Now we know, ${\tan ^{ - 1}}3{\text{ = 71}}{\text{.56}}^\circ $and cos 71.56° =$\dfrac{1}{{\sqrt {10} }}$, also tan (2 × 71.56°) = $ - \dfrac{3}{4}$
$
\Rightarrow - 12\left( { - \dfrac{3}{4}} \right) - \dfrac{{\sqrt {10} }}{{\left( {\dfrac{1}{{\sqrt {10} }}} \right)}} + 1{\text{ = 0}} \\
\Rightarrow {\text{9 - 10 + 1 = 0}} \\
\Rightarrow {\text{0 = }}0 \\
$
Hence n is an odd integer.
Option D is the correct answer.
Note – In order to solve this type of problem the key is to verify the possible values of n one by one. It is important to have adequate knowledge in using the trigonometric tables of tan and cos functions, also their inverse functions. WE have to be careful while converting the angles inside the tan and cos functions,
tan (nπ – θ) = -tan θ and cos (nπ – θ) = cos θ, when n is an even number.
tan (nπ – θ) = tan θ and cos (nπ – θ) = -cos θ, when n is an odd number.
Complete Step-by-Step solution:
Given Data, 12tan2x + $\dfrac{{\sqrt {10} }}{{{\text{cos x}}}}$+ 1
We put x = nπ - ${\text{ta}}{{\text{n}}^{ - 1}}$3 in this equation we get,
$ \Rightarrow 12{\text{ tan }}\left( {{\text{2n}}\pi {\text{ - 2ta}}{{\text{n}}^{ - 1}}3} \right) + \dfrac{{\sqrt {10} }}{{{\text{cos }}\left( {{\text{n}}\pi {\text{ - ta}}{{\text{n}}^{ - 1}}3} \right)}} + 1{\text{ = 0}}$
Now let n be even,
$ \Rightarrow 12{\text{ tan }}\left( {{\text{2n}}\pi {\text{ - 2ta}}{{\text{n}}^{ - 1}}3} \right) + \dfrac{{\sqrt {10} }}{{{\text{cos }}\left( {{\text{n}}\pi {\text{ - ta}}{{\text{n}}^{ - 1}}3} \right)}} + 1{\text{ = 0}}$
We know tan (nπ – θ) = -tan θ and cos (nπ – θ) = cos θ, when n is an even number
$ \Rightarrow - 12{\text{ tan }}\left( {{\text{2ta}}{{\text{n}}^{ - 1}}3} \right) + \dfrac{{\sqrt {10} }}{{{\text{cos }}\left( {{\text{ta}}{{\text{n}}^{ - 1}}3} \right)}} + 1{\text{ = 0}}$
Now we know, ${\tan ^{ - 1}}3{\text{ = 71}}{\text{.56}}^\circ $and cos 71.56° =$\dfrac{1}{{\sqrt {10} }}$, also tan (2 × 71.56°) = $ - \dfrac{3}{4}$
We get these values of tan, tan inverse and cos functions from their respective trigonometric tables.
$
\Rightarrow - 12\left( { - \dfrac{3}{4}} \right) + \dfrac{{\sqrt {10} }}{{\left( {\dfrac{1}{{\sqrt {10} }}} \right)}} + 1{\text{ = 0}} \\
\Rightarrow {\text{9 + 10 + 1 = 0}} \\
\Rightarrow {\text{20}} \ne 0 \\
$
Hence n is not an even integer.
Now let n be an odd number,
$ \Rightarrow 12{\text{ tan }}\left( {{\text{2n}}\pi {\text{ - 2ta}}{{\text{n}}^{ - 1}}3} \right) + \dfrac{{\sqrt {10} }}{{{\text{cos }}\left( {{\text{n}}\pi {\text{ - ta}}{{\text{n}}^{ - 1}}3} \right)}} + 1{\text{ = 0}}$
We know tan (nπ – θ) = tan θ and cos (nπ – θ) = -cos θ, when n is an odd number
$ \Rightarrow 12{\text{ tan }}\left( {{\text{2ta}}{{\text{n}}^{ - 1}}3} \right) + \dfrac{{\sqrt {10} }}{{{\text{ - cos }}\left( {{\text{ta}}{{\text{n}}^{ - 1}}3} \right)}} + 1{\text{ = 0}}$
Now we know, ${\tan ^{ - 1}}3{\text{ = 71}}{\text{.56}}^\circ $and cos 71.56° =$\dfrac{1}{{\sqrt {10} }}$, also tan (2 × 71.56°) = $ - \dfrac{3}{4}$
$
\Rightarrow - 12\left( { - \dfrac{3}{4}} \right) - \dfrac{{\sqrt {10} }}{{\left( {\dfrac{1}{{\sqrt {10} }}} \right)}} + 1{\text{ = 0}} \\
\Rightarrow {\text{9 - 10 + 1 = 0}} \\
\Rightarrow {\text{0 = }}0 \\
$
Hence n is an odd integer.
Option D is the correct answer.
Note – In order to solve this type of problem the key is to verify the possible values of n one by one. It is important to have adequate knowledge in using the trigonometric tables of tan and cos functions, also their inverse functions. WE have to be careful while converting the angles inside the tan and cos functions,
tan (nπ – θ) = -tan θ and cos (nπ – θ) = cos θ, when n is an even number.
tan (nπ – θ) = tan θ and cos (nπ – θ) = -cos θ, when n is an odd number.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

