
If \[x = \dfrac{2}{3}\] and \[x = - 3\]are roots of the quadratic equation \[a{x^2} + 7x + b = 0\], find the value of a and b.
Answer
558.6k+ views
Hint: As roots of the quadratic equation are given just calculate the sum of roots and product of roots with the help of the given values in the equation and roots. Then, calculate the values of a and b.
Complete step-by-step answer:
As, the given quadratic equation is \[a{x^2} + 7x + b = 0\] which is in the form \[a{x^2} + bx + c = 0\] as we have to calculate the value of a and b given in the equation.
The roots of the above equation are given as \[{x_1} = \dfrac{2}{3}\] and \[{x_2} = - 3\]
So, it will satisfy the sum of roots as \[\dfrac{{ - b}}{a}\] and the product of roots as \[\dfrac{b}{a}\] .
Here, we will first calculate sum of roots that is \[{x_1} + {x_2} = \dfrac{{ - b}}{a}\]
Substituting the values of \[{x_1}\] and \[{x_2}\] in above and also put b = 7.
We get, \[\dfrac{2}{3} - 3 = \dfrac{{ - 7}}{a}\]
By taking L.C.M on left hand side we get,
$\Rightarrow$ \[\dfrac{{2 - 9}}{3} = \dfrac{{ - 7}}{a}\]
On further simplifying:
$\Rightarrow$ \[\dfrac{{ - 7}}{3} = \dfrac{{ - 7}}{a}\]
Cancelling -7 from L.H.S and R.H.S
We get, \[\dfrac{1}{3} = \dfrac{1}{a}\]
By cross multiplying we get,
$\Rightarrow$ \[a = 3\]
Now, we will calculate the product of roots that is \[{x_1} \times {x_2} = \dfrac{b}{a}\]
Substituting the values of \[{x_1}\] and \[{x_2}\] in above and also put a = 3.
We get, \[\dfrac{2}{3} \times 3 = \dfrac{b}{3}\]
Cancelling 3 from both numerator and denominator in L.H.S.
Here,
$\Rightarrow$ \[2 = \dfrac{b}{3}\]
By cross multiplying we get,
$\Rightarrow$ \[b = 6\]
Therefore, values of a and b are 3 , 6 .
Note: In these types of questions two roots are given and a quadratic equation. As, these roots simply mean to calculate the sum of roots that is \[\dfrac{{ - b}}{a}\] and product of roots that is \[\dfrac{b}{a}\]. By calculating these two values you can easily calculate the required values which were asked in the question.
Complete step-by-step answer:
As, the given quadratic equation is \[a{x^2} + 7x + b = 0\] which is in the form \[a{x^2} + bx + c = 0\] as we have to calculate the value of a and b given in the equation.
The roots of the above equation are given as \[{x_1} = \dfrac{2}{3}\] and \[{x_2} = - 3\]
So, it will satisfy the sum of roots as \[\dfrac{{ - b}}{a}\] and the product of roots as \[\dfrac{b}{a}\] .
Here, we will first calculate sum of roots that is \[{x_1} + {x_2} = \dfrac{{ - b}}{a}\]
Substituting the values of \[{x_1}\] and \[{x_2}\] in above and also put b = 7.
We get, \[\dfrac{2}{3} - 3 = \dfrac{{ - 7}}{a}\]
By taking L.C.M on left hand side we get,
$\Rightarrow$ \[\dfrac{{2 - 9}}{3} = \dfrac{{ - 7}}{a}\]
On further simplifying:
$\Rightarrow$ \[\dfrac{{ - 7}}{3} = \dfrac{{ - 7}}{a}\]
Cancelling -7 from L.H.S and R.H.S
We get, \[\dfrac{1}{3} = \dfrac{1}{a}\]
By cross multiplying we get,
$\Rightarrow$ \[a = 3\]
Now, we will calculate the product of roots that is \[{x_1} \times {x_2} = \dfrac{b}{a}\]
Substituting the values of \[{x_1}\] and \[{x_2}\] in above and also put a = 3.
We get, \[\dfrac{2}{3} \times 3 = \dfrac{b}{3}\]
Cancelling 3 from both numerator and denominator in L.H.S.
Here,
$\Rightarrow$ \[2 = \dfrac{b}{3}\]
By cross multiplying we get,
$\Rightarrow$ \[b = 6\]
Therefore, values of a and b are 3 , 6 .
Note: In these types of questions two roots are given and a quadratic equation. As, these roots simply mean to calculate the sum of roots that is \[\dfrac{{ - b}}{a}\] and product of roots that is \[\dfrac{b}{a}\]. By calculating these two values you can easily calculate the required values which were asked in the question.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

