
If x and y are two sides of a square and $x = \left( {1 + \sin A} \right)\left( {1 + \sin B} \right)\left( {1 + \sin C} \right) = \left( {1 - \sin A} \right)\left( {1 - \sin B} \right)\left( {1 - \sin C} \right)$ show that each side is equal to $ \pm \cos A\cos B\cos C$.
Answer
615.6k+ views
Hint:- In this question use the Pythagorean identity \[{\sin ^2}\theta + {\cos ^2}\theta = 1\] and also the property of square that all of its sides are equal.
Complete step-by-step solution -
Given that:
$\left( {1 + \sin A} \right)\left( {1 + \sin B} \right)\left( {1 + \sin C} \right) = \left( {1 - \sin A} \right)\left( {1 - \sin B} \right)\left( {1 - \sin C} \right)$
Multiply both sides by $\left( {1 + \sin A} \right)\left( {1 + \sin B} \right)\left( {1 + \sin C} \right)$ we get:
$
\left( {1 + \sin A} \right)\left( {1 + \sin B} \right)\left( {1 + \sin C} \right) \times \left( {1 + \sin A} \right)\left( {1 + \sin B} \right)\left( {1 + \sin C} \right) = \left( {1 - \sin A} \right)\left( {1 - \sin B} \right)\left( {1 - \sin C} \right) \times \left( {1 + \sin A} \right) \\
\left( {1 + \sin B} \right)\left( {1 + \sin C} \right) \\
$
We know that $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
Equation can be now be written as: ${\left( {1 + \sin A} \right)^2}{\left( {1 + \sin B} \right)^2}{\left( {1 + \sin C} \right)^2} = \left( {1 - {{\sin }^2}A} \right)\left( {1 - {{\sin }^2}B} \right)\left( {1 - {{\sin }^2}C} \right)$
As we know that:
$ {{sin} ^{2}}\theta + {{cos} ^{2}}\theta = 1 \\
\therefore {{cos} ^2}\theta = 1 - {{sin} ^{2}}\theta \\ $
Equation can be further written as: ${\left( {1 + \sin A} \right)^2}{\left( {1 + \sin B} \right)^2}{\left( {1 + \sin C} \right)^2} = {\cos ^2}A{\cos ^2}B{\cos ^2}C$
Therefore\[{\left[ {\left( {1 + \sin A} \right)\left( {1 + \sin B} \right)\left( {1 + \sin C} \right)} \right]^2} = {\left[ {\cos A\cos B\cos C} \right]^2}\]
Taking square roots both sides we get:
$\left( {1 + \sin A} \right)\left( {1 + \sin B} \right)\left( {1 + \sin C} \right) = \pm \cos A\cos B\cos C$
Therefore $x = \left( {1 + \sin A} \right)\left( {1 + \sin B} \right)\left( {1 + \sin C} \right) = \left( {1 - \sin A} \right)\left( {1 - \sin B} \right)\left( {1 - \sin C} \right) = \pm \cos A\cos B\cos C$
We know that all sides of a square are equal
Hence proved that each side is equal to $ \pm \cos A\cos B\cos C$
Note:- In this question first we multiplied the given equation with $\left( {1 + \sin A} \right)\left( {1 + \sin B} \right)\left( {1 + \sin C} \right)$ and simplified it using algebraic formula $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$ after that we applied the value of ${\cos ^2}\theta $ from the Pythagorean identity ${\sin ^2}\theta + {\cos ^2}\theta = 1$ and simplified the equation and got the final equation which signifies that each side of square is equal to $ \pm \cos A\cos B\cos C$.
Complete step-by-step solution -
Given that:
$\left( {1 + \sin A} \right)\left( {1 + \sin B} \right)\left( {1 + \sin C} \right) = \left( {1 - \sin A} \right)\left( {1 - \sin B} \right)\left( {1 - \sin C} \right)$
Multiply both sides by $\left( {1 + \sin A} \right)\left( {1 + \sin B} \right)\left( {1 + \sin C} \right)$ we get:
$
\left( {1 + \sin A} \right)\left( {1 + \sin B} \right)\left( {1 + \sin C} \right) \times \left( {1 + \sin A} \right)\left( {1 + \sin B} \right)\left( {1 + \sin C} \right) = \left( {1 - \sin A} \right)\left( {1 - \sin B} \right)\left( {1 - \sin C} \right) \times \left( {1 + \sin A} \right) \\
\left( {1 + \sin B} \right)\left( {1 + \sin C} \right) \\
$
We know that $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
Equation can be now be written as: ${\left( {1 + \sin A} \right)^2}{\left( {1 + \sin B} \right)^2}{\left( {1 + \sin C} \right)^2} = \left( {1 - {{\sin }^2}A} \right)\left( {1 - {{\sin }^2}B} \right)\left( {1 - {{\sin }^2}C} \right)$
As we know that:
$ {{sin} ^{2}}\theta + {{cos} ^{2}}\theta = 1 \\
\therefore {{cos} ^2}\theta = 1 - {{sin} ^{2}}\theta \\ $
Equation can be further written as: ${\left( {1 + \sin A} \right)^2}{\left( {1 + \sin B} \right)^2}{\left( {1 + \sin C} \right)^2} = {\cos ^2}A{\cos ^2}B{\cos ^2}C$
Therefore\[{\left[ {\left( {1 + \sin A} \right)\left( {1 + \sin B} \right)\left( {1 + \sin C} \right)} \right]^2} = {\left[ {\cos A\cos B\cos C} \right]^2}\]
Taking square roots both sides we get:
$\left( {1 + \sin A} \right)\left( {1 + \sin B} \right)\left( {1 + \sin C} \right) = \pm \cos A\cos B\cos C$
Therefore $x = \left( {1 + \sin A} \right)\left( {1 + \sin B} \right)\left( {1 + \sin C} \right) = \left( {1 - \sin A} \right)\left( {1 - \sin B} \right)\left( {1 - \sin C} \right) = \pm \cos A\cos B\cos C$
We know that all sides of a square are equal
Hence proved that each side is equal to $ \pm \cos A\cos B\cos C$
Note:- In this question first we multiplied the given equation with $\left( {1 + \sin A} \right)\left( {1 + \sin B} \right)\left( {1 + \sin C} \right)$ and simplified it using algebraic formula $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$ after that we applied the value of ${\cos ^2}\theta $ from the Pythagorean identity ${\sin ^2}\theta + {\cos ^2}\theta = 1$ and simplified the equation and got the final equation which signifies that each side of square is equal to $ \pm \cos A\cos B\cos C$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

