If $x$ and $y$ are positive integers and $x - y$ is even, show that ${x^2} - {y^2}$ is divisible by $4.$
Answer
Verified
506.1k+ views
Hint: Use closure property with addition and subtraction over integers.
We have given that If $x$ and $y$ are positive integers. Let $x = 2h$for$h \in \mathbb{Z}$and$y = 2k$for$k \in \mathbb{Z}$(Here$\mathbb{Z}$ represents the set of integers).Since,$x - y$ is even so we can also write it as multiple of $2$. That is $x - y = 2m$ for some $m \in \mathbb{Z}$.
Now consider,
$\begin{gathered}
{x^2} - {y^2} \\= (x + y)(x - y){\text{ [Using, }}{a^2} - {b^2} = (a + b)(a - b){\text{]}} \\
{\text{ = }}(2h + 2k)(2m){\text{ [Using, }}x = 2h,y = 2k,x - y = 2m{\text{]}} \\
= 2 \times 2(h + k)(m){\text{ [2 is taken out from both brackets]}} \\
{\text{ = 4}}(h + k)(m) \\
\end{gathered} $
Since, ${x^2} - {y^2}$ can be expressed out as the multiple of $4.$so, it can be divisible by $4$ and the multiple will be $m(h + k){\text{ where, }}m,h,k \in \mathbb{Z}$. Hence Proved.
Note: In number theories one needs to visualise the numbers in order to solve it. For example, if a problem says something is multiple of $4.$then immediately visualise that number as $4k{\text{ for some }}k \in \mathbb{Z}$.
We have given that If $x$ and $y$ are positive integers. Let $x = 2h$for$h \in \mathbb{Z}$and$y = 2k$for$k \in \mathbb{Z}$(Here$\mathbb{Z}$ represents the set of integers).Since,$x - y$ is even so we can also write it as multiple of $2$. That is $x - y = 2m$ for some $m \in \mathbb{Z}$.
Now consider,
$\begin{gathered}
{x^2} - {y^2} \\= (x + y)(x - y){\text{ [Using, }}{a^2} - {b^2} = (a + b)(a - b){\text{]}} \\
{\text{ = }}(2h + 2k)(2m){\text{ [Using, }}x = 2h,y = 2k,x - y = 2m{\text{]}} \\
= 2 \times 2(h + k)(m){\text{ [2 is taken out from both brackets]}} \\
{\text{ = 4}}(h + k)(m) \\
\end{gathered} $
Since, ${x^2} - {y^2}$ can be expressed out as the multiple of $4.$so, it can be divisible by $4$ and the multiple will be $m(h + k){\text{ where, }}m,h,k \in \mathbb{Z}$. Hence Proved.
Note: In number theories one needs to visualise the numbers in order to solve it. For example, if a problem says something is multiple of $4.$then immediately visualise that number as $4k{\text{ for some }}k \in \mathbb{Z}$.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Computer Science: Engaging Questions & Answers for Success
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The capital of British India was transferred from Calcutta class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE