
If x > a, then \[\int{\dfrac{dx}{{{x}^{2}}-{{a}^{2}}}}=\]?
Answer
554.4k+ views
Hint: This type of question is based on the concept of integration. First we have to simplify the given function using the formula \[{{x}^{2}}-{{a}^{2}}=\left( x+a \right)\left( x-a \right)\] in the denominator. Then, we need to multiply the numerator and denominator by 2a. Express the numerator as 2a=(x+a)-(x-a). Use the rule \[\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}\] to simplify the function further. Then substitute u=x+a and v=x-a. Integrate the functions separately with respect to u and v. substitute back the functions in terms of x to the final answer after integration.
Complete step by step answer:
According to the question, we are asked to find \[\int{\dfrac{dx}{{{x}^{2}}-{{a}^{2}}}}\].
We have been given the function is \[\dfrac{1}{{{x}^{2}}-{{a}^{2}}}\]. --------(1)
We know that \[{{x}^{2}}-{{a}^{2}}=\left( x+a \right)\left( x-a \right)\].
Using this formula in the function (1), we get
\[\dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{\left( x+a \right)\left( x-a \right)}\]
Now, let us divide the numerator and denominator by 2a.
\[\Rightarrow \dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{2a}{\left( x+a \right)\left( x-a \right)\times 2a}\]
We can write the function as \[\dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{2a}\times \dfrac{2a}{\left( x+a \right)\left( x-a \right)}\].
Now, let us add and subtract x in the numerator. We get
\[\dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{2a}\times \dfrac{2a+x-x}{\left( x+a \right)\left( x-a \right)}\]
\[\Rightarrow \dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{2a}\times \dfrac{a+a+x-x}{\left( x+a \right)\left( x-a \right)}\]
On arranging the terms in the numerator, we get
\[\dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{2a}\times \dfrac{x+a-x+a}{\left( x+a \right)\left( x-a \right)}\]
Let us take -1 common from the last two terms of the numerator.
\[\Rightarrow \dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{2a}\times \dfrac{x+a-\left( x-a \right)}{\left( x+a \right)\left( x-a \right)}\]
We know that \[\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}\]. Using this rule of division in the above function, we get
\[\Rightarrow \dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{2a}\left[ \dfrac{x+a}{\left( x+a \right)\left( x-a \right)}-\dfrac{x-a}{\left( x+a \right)\left( x-a \right)} \right]\]
We find that x+a is common in the first fraction. Cancelling out x+a. We get
\[\dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{2a}\left[ \dfrac{1}{\left( x-a \right)}-\dfrac{x-a}{\left( x+a \right)\left( x-a \right)} \right]\]
Now, x-a is common in the second fraction of the function. We get
\[\dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{2a}\left[ \dfrac{1}{\left( x-a \right)}-\dfrac{1}{\left( x+a \right)} \right]\] --------------(2)
We need to integrate \[\dfrac{1}{{{x}^{2}}-{{a}^{2}}}\] with respect to x.
\[\Rightarrow \int{\dfrac{1}{{{x}^{2}}-{{a}^{2}}}dx}=\int{\dfrac{1}{2a}\left[ \dfrac{1}{\left( x-a \right)}-\dfrac{1}{\left( x+a \right)} \right]}dx\]
We find that \[\dfrac{1}{2a}\] is a constant.
Therefore, we get
\[\int{\dfrac{1}{{{x}^{2}}-{{a}^{2}}}dx}=\dfrac{1}{2a}\int{\left[ \dfrac{1}{\left( x-a \right)}-\dfrac{1}{\left( x+a \right)} \right]}dx\]
Using the subtraction rule of integration, we get
\[\int{\left( u-v \right)dx=\int{udx-\int{vdx}}}\]
We get
\[\int{\dfrac{1}{{{x}^{2}}-{{a}^{2}}}dx}=\dfrac{1}{2a}\left[ \int{\dfrac{1}{\left( x-a \right)}}dx-\int{\dfrac{1}{\left( x+a \right)}dx} \right]\] ---------(3)
Let us integrate \[\int{\dfrac{1}{\left( x-a \right)}}dx\] first.
Let u=x-a
Differentiating u with respect to x, we get
\[\dfrac{du}{dx}=\dfrac{d}{dx}\left( x-a \right)\]
\[\Rightarrow \dfrac{du}{dx}=\dfrac{dx}{dx}-\dfrac{d}{dx}\left( a \right)\]
We know that \[\dfrac{dx}{dx}=1\] and differentiation of a constant is 0.
Therefore, we get
\[\dfrac{du}{dx}=1\]
\[\therefore du=dx\]
\[\Rightarrow \int{\dfrac{1}{\left( x-a \right)}}dx=\int{\dfrac{1}{u}}du\]
We know that \[\int{\dfrac{1}{x}}dx=\log x+c\]. Using this rule of integration, we get
\[\int{\dfrac{1}{u}}du=\log u+{{c}_{1}}\]
But we know that u=x-a.
Therefore, \[\int{\dfrac{1}{\left( x-a \right)}}dx=\log \left( x-a \right)+{{c}_{1}}\].
Now, consider \[\int{\dfrac{1}{\left( x+a \right)}}dx\].
Let v=x+a
Differentiating v with respect to x, we get
\[\dfrac{dv}{dx}=\dfrac{d}{dx}\left( x+a \right)\]
\[\Rightarrow \dfrac{dv}{dx}=\dfrac{dx}{dx}+\dfrac{d}{dx}\left( a \right)\]
We know that \[\dfrac{dx}{dx}=1\] and differentiation of a constant is 0.
Therefore, we get
\[\dfrac{dv}{dx}=1\]
\[\therefore dv=dx\]
\[\Rightarrow \int{\dfrac{1}{\left( x+a \right)}}dx=\int{\dfrac{1}{v}}dv\]
We know that \[\int{\dfrac{1}{x}}dx=\log x+c\]. Using this rule of integration, we get
\[\int{\dfrac{1}{v}}dv=\log v+{{c}_{2}}\]
But we know that v=x+a.
Therefore, \[\int{\dfrac{1}{\left( x+a \right)}}dx=\log \left( x+a \right)+{{c}_{2}}\].
Substitute this integration in equation (3).
\[\Rightarrow \int{\dfrac{1}{{{x}^{2}}-{{a}^{2}}}dx}=\dfrac{1}{2a}\left[ \log \left( x-a \right)+{{c}_{1}}-\log \left( x+a \right)-{{c}_{2}} \right]\]
Let us take the constants outside the bracket.
\[\Rightarrow \int{\dfrac{1}{{{x}^{2}}-{{a}^{2}}}dx}=\dfrac{1}{2a}\left[ \log \left( x-a \right)-\log \left( x+a \right) \right]+\dfrac{{{c}_{1}}-{{c}_{2}}}{2a}\]
Let us consider \[k=\dfrac{{{c}_{1}}-{{c}_{2}}}{2a}\], where k is a constant.
Therefore, we get
\[\int{\dfrac{1}{{{x}^{2}}-{{a}^{2}}}dx}=\dfrac{1}{2a}\left[ \log \left( x-a \right)-\log \left( x+a \right) \right]+k\]
We know that \[\log a-\log b=\log \dfrac{a}{b}\].
Using this rule of logarithm in the integration, we get
\[\int{\dfrac{1}{{{x}^{2}}-{{a}^{2}}}dx}=\dfrac{1}{2a}\left[ \log \dfrac{\left( x-a \right)}{\left( x+a \right)} \right]+k\]
\[\therefore \int{\dfrac{1}{{{x}^{2}}-{{a}^{2}}}dx}=\dfrac{1}{2a}\log \dfrac{\left( x-a \right)}{\left( x+a \right)}+k\]
Therefore, the integration of \[\dfrac{1}{{{x}^{2}}-{{a}^{2}}}\] with respect to x is \[\dfrac{1}{2a}\log \dfrac{\left( x-a \right)}{\left( x+a \right)}+k\].
Note:
Whenever we get this type of question, we have to simplify the given function to a simplified form for easy integration. We have to know that integration of \[\dfrac{1}{x}\] is log x. Also be thorough with the rules and properties of logarithm. Avoid calculation mistakes based on sign convention.
Complete step by step answer:
According to the question, we are asked to find \[\int{\dfrac{dx}{{{x}^{2}}-{{a}^{2}}}}\].
We have been given the function is \[\dfrac{1}{{{x}^{2}}-{{a}^{2}}}\]. --------(1)
We know that \[{{x}^{2}}-{{a}^{2}}=\left( x+a \right)\left( x-a \right)\].
Using this formula in the function (1), we get
\[\dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{\left( x+a \right)\left( x-a \right)}\]
Now, let us divide the numerator and denominator by 2a.
\[\Rightarrow \dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{2a}{\left( x+a \right)\left( x-a \right)\times 2a}\]
We can write the function as \[\dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{2a}\times \dfrac{2a}{\left( x+a \right)\left( x-a \right)}\].
Now, let us add and subtract x in the numerator. We get
\[\dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{2a}\times \dfrac{2a+x-x}{\left( x+a \right)\left( x-a \right)}\]
\[\Rightarrow \dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{2a}\times \dfrac{a+a+x-x}{\left( x+a \right)\left( x-a \right)}\]
On arranging the terms in the numerator, we get
\[\dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{2a}\times \dfrac{x+a-x+a}{\left( x+a \right)\left( x-a \right)}\]
Let us take -1 common from the last two terms of the numerator.
\[\Rightarrow \dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{2a}\times \dfrac{x+a-\left( x-a \right)}{\left( x+a \right)\left( x-a \right)}\]
We know that \[\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}\]. Using this rule of division in the above function, we get
\[\Rightarrow \dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{2a}\left[ \dfrac{x+a}{\left( x+a \right)\left( x-a \right)}-\dfrac{x-a}{\left( x+a \right)\left( x-a \right)} \right]\]
We find that x+a is common in the first fraction. Cancelling out x+a. We get
\[\dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{2a}\left[ \dfrac{1}{\left( x-a \right)}-\dfrac{x-a}{\left( x+a \right)\left( x-a \right)} \right]\]
Now, x-a is common in the second fraction of the function. We get
\[\dfrac{1}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{2a}\left[ \dfrac{1}{\left( x-a \right)}-\dfrac{1}{\left( x+a \right)} \right]\] --------------(2)
We need to integrate \[\dfrac{1}{{{x}^{2}}-{{a}^{2}}}\] with respect to x.
\[\Rightarrow \int{\dfrac{1}{{{x}^{2}}-{{a}^{2}}}dx}=\int{\dfrac{1}{2a}\left[ \dfrac{1}{\left( x-a \right)}-\dfrac{1}{\left( x+a \right)} \right]}dx\]
We find that \[\dfrac{1}{2a}\] is a constant.
Therefore, we get
\[\int{\dfrac{1}{{{x}^{2}}-{{a}^{2}}}dx}=\dfrac{1}{2a}\int{\left[ \dfrac{1}{\left( x-a \right)}-\dfrac{1}{\left( x+a \right)} \right]}dx\]
Using the subtraction rule of integration, we get
\[\int{\left( u-v \right)dx=\int{udx-\int{vdx}}}\]
We get
\[\int{\dfrac{1}{{{x}^{2}}-{{a}^{2}}}dx}=\dfrac{1}{2a}\left[ \int{\dfrac{1}{\left( x-a \right)}}dx-\int{\dfrac{1}{\left( x+a \right)}dx} \right]\] ---------(3)
Let us integrate \[\int{\dfrac{1}{\left( x-a \right)}}dx\] first.
Let u=x-a
Differentiating u with respect to x, we get
\[\dfrac{du}{dx}=\dfrac{d}{dx}\left( x-a \right)\]
\[\Rightarrow \dfrac{du}{dx}=\dfrac{dx}{dx}-\dfrac{d}{dx}\left( a \right)\]
We know that \[\dfrac{dx}{dx}=1\] and differentiation of a constant is 0.
Therefore, we get
\[\dfrac{du}{dx}=1\]
\[\therefore du=dx\]
\[\Rightarrow \int{\dfrac{1}{\left( x-a \right)}}dx=\int{\dfrac{1}{u}}du\]
We know that \[\int{\dfrac{1}{x}}dx=\log x+c\]. Using this rule of integration, we get
\[\int{\dfrac{1}{u}}du=\log u+{{c}_{1}}\]
But we know that u=x-a.
Therefore, \[\int{\dfrac{1}{\left( x-a \right)}}dx=\log \left( x-a \right)+{{c}_{1}}\].
Now, consider \[\int{\dfrac{1}{\left( x+a \right)}}dx\].
Let v=x+a
Differentiating v with respect to x, we get
\[\dfrac{dv}{dx}=\dfrac{d}{dx}\left( x+a \right)\]
\[\Rightarrow \dfrac{dv}{dx}=\dfrac{dx}{dx}+\dfrac{d}{dx}\left( a \right)\]
We know that \[\dfrac{dx}{dx}=1\] and differentiation of a constant is 0.
Therefore, we get
\[\dfrac{dv}{dx}=1\]
\[\therefore dv=dx\]
\[\Rightarrow \int{\dfrac{1}{\left( x+a \right)}}dx=\int{\dfrac{1}{v}}dv\]
We know that \[\int{\dfrac{1}{x}}dx=\log x+c\]. Using this rule of integration, we get
\[\int{\dfrac{1}{v}}dv=\log v+{{c}_{2}}\]
But we know that v=x+a.
Therefore, \[\int{\dfrac{1}{\left( x+a \right)}}dx=\log \left( x+a \right)+{{c}_{2}}\].
Substitute this integration in equation (3).
\[\Rightarrow \int{\dfrac{1}{{{x}^{2}}-{{a}^{2}}}dx}=\dfrac{1}{2a}\left[ \log \left( x-a \right)+{{c}_{1}}-\log \left( x+a \right)-{{c}_{2}} \right]\]
Let us take the constants outside the bracket.
\[\Rightarrow \int{\dfrac{1}{{{x}^{2}}-{{a}^{2}}}dx}=\dfrac{1}{2a}\left[ \log \left( x-a \right)-\log \left( x+a \right) \right]+\dfrac{{{c}_{1}}-{{c}_{2}}}{2a}\]
Let us consider \[k=\dfrac{{{c}_{1}}-{{c}_{2}}}{2a}\], where k is a constant.
Therefore, we get
\[\int{\dfrac{1}{{{x}^{2}}-{{a}^{2}}}dx}=\dfrac{1}{2a}\left[ \log \left( x-a \right)-\log \left( x+a \right) \right]+k\]
We know that \[\log a-\log b=\log \dfrac{a}{b}\].
Using this rule of logarithm in the integration, we get
\[\int{\dfrac{1}{{{x}^{2}}-{{a}^{2}}}dx}=\dfrac{1}{2a}\left[ \log \dfrac{\left( x-a \right)}{\left( x+a \right)} \right]+k\]
\[\therefore \int{\dfrac{1}{{{x}^{2}}-{{a}^{2}}}dx}=\dfrac{1}{2a}\log \dfrac{\left( x-a \right)}{\left( x+a \right)}+k\]
Therefore, the integration of \[\dfrac{1}{{{x}^{2}}-{{a}^{2}}}\] with respect to x is \[\dfrac{1}{2a}\log \dfrac{\left( x-a \right)}{\left( x+a \right)}+k\].
Note:
Whenever we get this type of question, we have to simplify the given function to a simplified form for easy integration. We have to know that integration of \[\dfrac{1}{x}\] is log x. Also be thorough with the rules and properties of logarithm. Avoid calculation mistakes based on sign convention.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

