
If \[x+y={{45}^{\circ }},\] then prove that
\[\left( a \right)\left( 1+\tan x \right)\left( 1+\tan y \right)=2\]
\[\left( b \right)\left( \cot x-1 \right)\left( \cot y-1 \right)=2\]
Answer
568.2k+ views
Hint: We have \[\left( x+y \right)={{45}^{\circ }}.\] We first have to show \[\left( 1+\tan x \right)\left( 1+\tan y \right)=2.\] So, we will first expand the brackets and then using \[\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}\] we will get our required value. For the second part, we will first open the bracket and then we will use \[\cot \left( x+y \right)=\dfrac{\cot x\cot y-1}{\cot x+\cot y}\] and we will use \[x+y={{45}^{\circ }}\] to get our required solution.
Complete step by step answer:
We are given that \[x+y={{45}^{\circ }}\] we will first have to prove that \[\left( 1+\tan x \right)\left( 1+\tan y \right)=2.\] So, we will start by considering the left-hand side. So, we have,
\[\left( 1+\tan x \right)\left( 1+\tan y \right)\]
Opening the brackets, we get,
\[\Rightarrow \left( 1+\tan x \right)\left( 1+\tan y \right)=1+\tan x\tan y+\tan x+\tan y......\left( i \right)\]
Now, we will use the trigonometric formula which is expressed as \[\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}.\]
Now, as we have \[x+y={{45}^{\circ }}\] so using this in the above equation, we get,
\[\tan {{45}^{\circ }}=\dfrac{\tan x+\tan y}{1-\tan x\tan y}\]
As, \[\tan {{45}^{\circ }}=1\] so we have,
\[1=\dfrac{\tan x+\tan y}{1-\tan x\tan y}\]
On simplifying, we get,
\[\Rightarrow 1\times \left( 1-\tan x\tan y \right)=\tan x+\tan y\]
So,
\[\Rightarrow 1-\tan x\tan y=\tan x+\tan y\]
Shifting tan x tan y to the other side, we get,
\[\Rightarrow 1=\tan x+\tan y+\tan x\tan y......\left( ii \right)\]
Now using (i) and (ii), we get,
\[\Rightarrow \left( 1+\tan x \right)\left( 1+\tan y \right)=1+\tan x+\tan y+\tan x\tan y\left[ \text{using (ii)} \right]\]
\[\Rightarrow \left( 1+\tan x \right)\left( 1+\tan y \right)=1+1\]
\[\Rightarrow \left( 1+\tan x \right)\left( 1+\tan y \right)=2\]
So, we get,
\[\Rightarrow \left( 1+\tan x \right)\left( 1+\tan y \right)=2\]
Hence proved
(b) Secondly, we have to prove that
\[\left( \cot x-1 \right)\left( \cot y-1 \right)=2\]
We start again by considering the left-hand side, so we get,
\[\left( \cot x-1 \right)\left( \cot y-1 \right)\]
Opening the brackets, we get,
\[\Rightarrow \left( \cot x-1 \right)\left( \cot y-1 \right)=\cot x\cot y-\cot x-\cot y+1......\left( iii \right)\]
Now we will use a trigonometric formula which is as follows
\[\cot \left( x+y \right)=\dfrac{\cot x\cot y-1}{\cot x+\cot y}\]
Now, as \[x+y={{45}^{\circ }}\] so we get,
\[\Rightarrow \cot {{45}^{\circ }}=\dfrac{\cot x\cot y-1}{\cot x+\cot y}\]
As \[\cot {{45}^{\circ }}=1\] so we get,
\[\Rightarrow 1=\dfrac{\cot x\cot y-1}{\cot x+\cot y}\]
Cross multiplying, we get,
\[\Rightarrow \cot y+\cot x=\cot x\cot y-1\]
Simplifying, we get,
\[\Rightarrow \cot x\cot y-\cot y-\cot x=1......\left( iv \right)\]
Now, using (iii) and (iv), we get,
\[\Rightarrow \left( \cot x-1 \right)\left( \cot y-1 \right)=\cot x\cot y-\cot x-\cot y+1\]
\[\Rightarrow \left( \cot x-1 \right)\left( \cot y-1 \right)=1+1\left[ \text{using (iv)} \right]\]
\[\Rightarrow \left( \cot x-1 \right)\left( \cot y-1 \right)=2\]
Hence proved
Note:
Students should remember when we product the elements of two brackets, then we have to multiply each element of the first bracket with each element of the other bracket.
\[\left( 1+\tan x \right)\left( 1+\tan y \right)\ne 1\times 1+\tan x\tan y\]
But \[\left( 1+\tan x \right)\left( 1+\tan y \right)=\left( 1+\tan x \right)\left( 1 \right)+\left( 1+\tan x \right)\left( \tan y \right)\]
\[\Rightarrow \left( 1+\tan x \right)\left( 1+\tan y \right)=1+\tan x+\tan y+\tan x\tan y\]
Also, while simplifying, we keep a close watch on the sign of the elements.
Complete step by step answer:
We are given that \[x+y={{45}^{\circ }}\] we will first have to prove that \[\left( 1+\tan x \right)\left( 1+\tan y \right)=2.\] So, we will start by considering the left-hand side. So, we have,
\[\left( 1+\tan x \right)\left( 1+\tan y \right)\]
Opening the brackets, we get,
\[\Rightarrow \left( 1+\tan x \right)\left( 1+\tan y \right)=1+\tan x\tan y+\tan x+\tan y......\left( i \right)\]
Now, we will use the trigonometric formula which is expressed as \[\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}.\]
Now, as we have \[x+y={{45}^{\circ }}\] so using this in the above equation, we get,
\[\tan {{45}^{\circ }}=\dfrac{\tan x+\tan y}{1-\tan x\tan y}\]
As, \[\tan {{45}^{\circ }}=1\] so we have,
\[1=\dfrac{\tan x+\tan y}{1-\tan x\tan y}\]
On simplifying, we get,
\[\Rightarrow 1\times \left( 1-\tan x\tan y \right)=\tan x+\tan y\]
So,
\[\Rightarrow 1-\tan x\tan y=\tan x+\tan y\]
Shifting tan x tan y to the other side, we get,
\[\Rightarrow 1=\tan x+\tan y+\tan x\tan y......\left( ii \right)\]
Now using (i) and (ii), we get,
\[\Rightarrow \left( 1+\tan x \right)\left( 1+\tan y \right)=1+\tan x+\tan y+\tan x\tan y\left[ \text{using (ii)} \right]\]
\[\Rightarrow \left( 1+\tan x \right)\left( 1+\tan y \right)=1+1\]
\[\Rightarrow \left( 1+\tan x \right)\left( 1+\tan y \right)=2\]
So, we get,
\[\Rightarrow \left( 1+\tan x \right)\left( 1+\tan y \right)=2\]
Hence proved
(b) Secondly, we have to prove that
\[\left( \cot x-1 \right)\left( \cot y-1 \right)=2\]
We start again by considering the left-hand side, so we get,
\[\left( \cot x-1 \right)\left( \cot y-1 \right)\]
Opening the brackets, we get,
\[\Rightarrow \left( \cot x-1 \right)\left( \cot y-1 \right)=\cot x\cot y-\cot x-\cot y+1......\left( iii \right)\]
Now we will use a trigonometric formula which is as follows
\[\cot \left( x+y \right)=\dfrac{\cot x\cot y-1}{\cot x+\cot y}\]
Now, as \[x+y={{45}^{\circ }}\] so we get,
\[\Rightarrow \cot {{45}^{\circ }}=\dfrac{\cot x\cot y-1}{\cot x+\cot y}\]
As \[\cot {{45}^{\circ }}=1\] so we get,
\[\Rightarrow 1=\dfrac{\cot x\cot y-1}{\cot x+\cot y}\]
Cross multiplying, we get,
\[\Rightarrow \cot y+\cot x=\cot x\cot y-1\]
Simplifying, we get,
\[\Rightarrow \cot x\cot y-\cot y-\cot x=1......\left( iv \right)\]
Now, using (iii) and (iv), we get,
\[\Rightarrow \left( \cot x-1 \right)\left( \cot y-1 \right)=\cot x\cot y-\cot x-\cot y+1\]
\[\Rightarrow \left( \cot x-1 \right)\left( \cot y-1 \right)=1+1\left[ \text{using (iv)} \right]\]
\[\Rightarrow \left( \cot x-1 \right)\left( \cot y-1 \right)=2\]
Hence proved
Note:
Students should remember when we product the elements of two brackets, then we have to multiply each element of the first bracket with each element of the other bracket.
\[\left( 1+\tan x \right)\left( 1+\tan y \right)\ne 1\times 1+\tan x\tan y\]
But \[\left( 1+\tan x \right)\left( 1+\tan y \right)=\left( 1+\tan x \right)\left( 1 \right)+\left( 1+\tan x \right)\left( \tan y \right)\]
\[\Rightarrow \left( 1+\tan x \right)\left( 1+\tan y \right)=1+\tan x+\tan y+\tan x\tan y\]
Also, while simplifying, we keep a close watch on the sign of the elements.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

