
If we have the value of x as $\pi < x< 2\pi $ then find the value of $\dfrac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}$.
Answer
555k+ views
Hint: We first try to use the formula of submultiple angle. Then for the root value we take modulus and based on the value of $\pi < x <2\pi $, we take their respective sign. Then using the formula of $\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A.\tan B}$ we convert the equation into a single trigonometric function.
Complete step-by-step solution
We have the trigonometric submultiple angle formula of $1+\cos x=2{{\cos }^{2}}\dfrac{x}{2}$ and also $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$.
We put the values in the given equation of $\dfrac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}$ to get
$\dfrac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}=\dfrac{\sqrt{2{{\cos }^{2}}\dfrac{x}{2}}+\sqrt{2{{\sin }^{2}}\dfrac{x}{2}}}{\sqrt{2{{\cos }^{2}}\dfrac{x}{2}}-\sqrt{2{{\sin }^{2}}\dfrac{x}{2}}}$
Now for the square root values we take their modulus values.
$\dfrac{\sqrt{2{{\cos }^{2}}\dfrac{x}{2}}+\sqrt{2{{\sin }^{2}}\dfrac{x}{2}}}{\sqrt{2{{\cos }^{2}}\dfrac{x}{2}}-\sqrt{2{{\sin }^{2}}\dfrac{x}{2}}}=\dfrac{\sqrt{2}\left| \cos \dfrac{x}{2} \right|+\sqrt{2}\left| \sin \dfrac{x}{2} \right|}{\sqrt{2}\left| \cos \dfrac{x}{2} \right|-\sqrt{2}\left| \sin \dfrac{x}{2} \right|}=\dfrac{\left| \cos \dfrac{x}{2} \right|+\left| \sin \dfrac{x}{2} \right|}{\left| \cos \dfrac{x}{2} \right|-\left| \sin \dfrac{x}{2} \right|}$
As it’s given $\pi < x< 2\pi $, multiplying $\dfrac{1}{2}$ we get $\dfrac{\pi }{2}<\dfrac{x}{2}<\pi $. In that range value of $\cos \dfrac{x}{2}< 0$ and value of $\sin \dfrac{x}{2}> 0$. The modulus values change to \[\left| \cos \dfrac{x}{2} \right|\to -\cos \dfrac{x}{2}\] and $\left| \sin \dfrac{x}{2} \right|\to \sin \dfrac{x}{2}$ in the range of $\dfrac{\pi }{2}< \dfrac{x}{2}< \pi $.
The final equation becomes $\dfrac{\left| \cos \dfrac{x}{2} \right|+\left| \sin \dfrac{x}{2} \right|}{\left| \cos \dfrac{x}{2} \right|-\left| \sin \dfrac{x}{2} \right|}=\dfrac{-\cos \dfrac{x}{2}+\sin \dfrac{x}{2}}{-\cos \dfrac{x}{2}-\sin \dfrac{x}{2}}$.
Now we take the common of $-\cos \dfrac{x}{2}$.
So, $\dfrac{-\cos \dfrac{x}{2}+\sin \dfrac{x}{2}}{-\cos \dfrac{x}{2}-\sin \dfrac{x}{2}}=\dfrac{-\cos \dfrac{x}{2}\left( 1-\tan \dfrac{x}{2} \right)}{-\cos \dfrac{x}{2}\left( 1+\tan \dfrac{x}{2} \right)}$.
We convert the value 1 into $\tan \dfrac{\pi }{4}$ and get $\dfrac{-\cos \dfrac{x}{2}\left( 1-\tan \dfrac{x}{2} \right)}{-\cos \dfrac{x}{2}\left( 1+1.\tan \dfrac{x}{2} \right)}=\dfrac{\tan \dfrac{\pi }{4}-\tan \dfrac{x}{2}}{1+\tan \dfrac{\pi }{4}.\tan \dfrac{x}{2}}$.
Then we use the formula $\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A.\tan B}$
$\dfrac{\tan \dfrac{\pi }{4}-\tan \dfrac{x}{2}}{1+\tan \dfrac{\pi }{4}.\tan \dfrac{x}{2}}=\tan \left( \dfrac{\pi }{4}-\dfrac{x}{2} \right)$.
Therefore, the value of $\dfrac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}$ is $\tan \left( \dfrac{\pi }{4}-\dfrac{x}{2} \right)$.
Note: Instead of taking $-\cos \dfrac{x}{2}$ as common we could have taken $-\sin \dfrac{x}{2}$. The function would have been of $\cot \alpha $ instead of $\tan \alpha $. For any case of root value, we always need to use the modulus value if otherwise mentioned.
Complete step-by-step solution
We have the trigonometric submultiple angle formula of $1+\cos x=2{{\cos }^{2}}\dfrac{x}{2}$ and also $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$.
We put the values in the given equation of $\dfrac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}$ to get
$\dfrac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}=\dfrac{\sqrt{2{{\cos }^{2}}\dfrac{x}{2}}+\sqrt{2{{\sin }^{2}}\dfrac{x}{2}}}{\sqrt{2{{\cos }^{2}}\dfrac{x}{2}}-\sqrt{2{{\sin }^{2}}\dfrac{x}{2}}}$
Now for the square root values we take their modulus values.
$\dfrac{\sqrt{2{{\cos }^{2}}\dfrac{x}{2}}+\sqrt{2{{\sin }^{2}}\dfrac{x}{2}}}{\sqrt{2{{\cos }^{2}}\dfrac{x}{2}}-\sqrt{2{{\sin }^{2}}\dfrac{x}{2}}}=\dfrac{\sqrt{2}\left| \cos \dfrac{x}{2} \right|+\sqrt{2}\left| \sin \dfrac{x}{2} \right|}{\sqrt{2}\left| \cos \dfrac{x}{2} \right|-\sqrt{2}\left| \sin \dfrac{x}{2} \right|}=\dfrac{\left| \cos \dfrac{x}{2} \right|+\left| \sin \dfrac{x}{2} \right|}{\left| \cos \dfrac{x}{2} \right|-\left| \sin \dfrac{x}{2} \right|}$
As it’s given $\pi < x< 2\pi $, multiplying $\dfrac{1}{2}$ we get $\dfrac{\pi }{2}<\dfrac{x}{2}<\pi $. In that range value of $\cos \dfrac{x}{2}< 0$ and value of $\sin \dfrac{x}{2}> 0$. The modulus values change to \[\left| \cos \dfrac{x}{2} \right|\to -\cos \dfrac{x}{2}\] and $\left| \sin \dfrac{x}{2} \right|\to \sin \dfrac{x}{2}$ in the range of $\dfrac{\pi }{2}< \dfrac{x}{2}< \pi $.
The final equation becomes $\dfrac{\left| \cos \dfrac{x}{2} \right|+\left| \sin \dfrac{x}{2} \right|}{\left| \cos \dfrac{x}{2} \right|-\left| \sin \dfrac{x}{2} \right|}=\dfrac{-\cos \dfrac{x}{2}+\sin \dfrac{x}{2}}{-\cos \dfrac{x}{2}-\sin \dfrac{x}{2}}$.
Now we take the common of $-\cos \dfrac{x}{2}$.
So, $\dfrac{-\cos \dfrac{x}{2}+\sin \dfrac{x}{2}}{-\cos \dfrac{x}{2}-\sin \dfrac{x}{2}}=\dfrac{-\cos \dfrac{x}{2}\left( 1-\tan \dfrac{x}{2} \right)}{-\cos \dfrac{x}{2}\left( 1+\tan \dfrac{x}{2} \right)}$.
We convert the value 1 into $\tan \dfrac{\pi }{4}$ and get $\dfrac{-\cos \dfrac{x}{2}\left( 1-\tan \dfrac{x}{2} \right)}{-\cos \dfrac{x}{2}\left( 1+1.\tan \dfrac{x}{2} \right)}=\dfrac{\tan \dfrac{\pi }{4}-\tan \dfrac{x}{2}}{1+\tan \dfrac{\pi }{4}.\tan \dfrac{x}{2}}$.
Then we use the formula $\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A.\tan B}$
$\dfrac{\tan \dfrac{\pi }{4}-\tan \dfrac{x}{2}}{1+\tan \dfrac{\pi }{4}.\tan \dfrac{x}{2}}=\tan \left( \dfrac{\pi }{4}-\dfrac{x}{2} \right)$.
Therefore, the value of $\dfrac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}$ is $\tan \left( \dfrac{\pi }{4}-\dfrac{x}{2} \right)$.
Note: Instead of taking $-\cos \dfrac{x}{2}$ as common we could have taken $-\sin \dfrac{x}{2}$. The function would have been of $\cot \alpha $ instead of $\tan \alpha $. For any case of root value, we always need to use the modulus value if otherwise mentioned.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

