
If we have the value of x as $\pi < x< 2\pi $ then find the value of $\dfrac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}$.
Answer
471.9k+ views
Hint: We first try to use the formula of submultiple angle. Then for the root value we take modulus and based on the value of $\pi < x <2\pi $, we take their respective sign. Then using the formula of $\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A.\tan B}$ we convert the equation into a single trigonometric function.
Complete step-by-step solution
We have the trigonometric submultiple angle formula of $1+\cos x=2{{\cos }^{2}}\dfrac{x}{2}$ and also $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$.
We put the values in the given equation of $\dfrac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}$ to get
$\dfrac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}=\dfrac{\sqrt{2{{\cos }^{2}}\dfrac{x}{2}}+\sqrt{2{{\sin }^{2}}\dfrac{x}{2}}}{\sqrt{2{{\cos }^{2}}\dfrac{x}{2}}-\sqrt{2{{\sin }^{2}}\dfrac{x}{2}}}$
Now for the square root values we take their modulus values.
$\dfrac{\sqrt{2{{\cos }^{2}}\dfrac{x}{2}}+\sqrt{2{{\sin }^{2}}\dfrac{x}{2}}}{\sqrt{2{{\cos }^{2}}\dfrac{x}{2}}-\sqrt{2{{\sin }^{2}}\dfrac{x}{2}}}=\dfrac{\sqrt{2}\left| \cos \dfrac{x}{2} \right|+\sqrt{2}\left| \sin \dfrac{x}{2} \right|}{\sqrt{2}\left| \cos \dfrac{x}{2} \right|-\sqrt{2}\left| \sin \dfrac{x}{2} \right|}=\dfrac{\left| \cos \dfrac{x}{2} \right|+\left| \sin \dfrac{x}{2} \right|}{\left| \cos \dfrac{x}{2} \right|-\left| \sin \dfrac{x}{2} \right|}$
As it’s given $\pi < x< 2\pi $, multiplying $\dfrac{1}{2}$ we get $\dfrac{\pi }{2}<\dfrac{x}{2}<\pi $. In that range value of $\cos \dfrac{x}{2}< 0$ and value of $\sin \dfrac{x}{2}> 0$. The modulus values change to \[\left| \cos \dfrac{x}{2} \right|\to -\cos \dfrac{x}{2}\] and $\left| \sin \dfrac{x}{2} \right|\to \sin \dfrac{x}{2}$ in the range of $\dfrac{\pi }{2}< \dfrac{x}{2}< \pi $.
The final equation becomes $\dfrac{\left| \cos \dfrac{x}{2} \right|+\left| \sin \dfrac{x}{2} \right|}{\left| \cos \dfrac{x}{2} \right|-\left| \sin \dfrac{x}{2} \right|}=\dfrac{-\cos \dfrac{x}{2}+\sin \dfrac{x}{2}}{-\cos \dfrac{x}{2}-\sin \dfrac{x}{2}}$.
Now we take the common of $-\cos \dfrac{x}{2}$.
So, $\dfrac{-\cos \dfrac{x}{2}+\sin \dfrac{x}{2}}{-\cos \dfrac{x}{2}-\sin \dfrac{x}{2}}=\dfrac{-\cos \dfrac{x}{2}\left( 1-\tan \dfrac{x}{2} \right)}{-\cos \dfrac{x}{2}\left( 1+\tan \dfrac{x}{2} \right)}$.
We convert the value 1 into $\tan \dfrac{\pi }{4}$ and get $\dfrac{-\cos \dfrac{x}{2}\left( 1-\tan \dfrac{x}{2} \right)}{-\cos \dfrac{x}{2}\left( 1+1.\tan \dfrac{x}{2} \right)}=\dfrac{\tan \dfrac{\pi }{4}-\tan \dfrac{x}{2}}{1+\tan \dfrac{\pi }{4}.\tan \dfrac{x}{2}}$.
Then we use the formula $\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A.\tan B}$
$\dfrac{\tan \dfrac{\pi }{4}-\tan \dfrac{x}{2}}{1+\tan \dfrac{\pi }{4}.\tan \dfrac{x}{2}}=\tan \left( \dfrac{\pi }{4}-\dfrac{x}{2} \right)$.
Therefore, the value of $\dfrac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}$ is $\tan \left( \dfrac{\pi }{4}-\dfrac{x}{2} \right)$.
Note: Instead of taking $-\cos \dfrac{x}{2}$ as common we could have taken $-\sin \dfrac{x}{2}$. The function would have been of $\cot \alpha $ instead of $\tan \alpha $. For any case of root value, we always need to use the modulus value if otherwise mentioned.
Complete step-by-step solution
We have the trigonometric submultiple angle formula of $1+\cos x=2{{\cos }^{2}}\dfrac{x}{2}$ and also $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$.
We put the values in the given equation of $\dfrac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}$ to get
$\dfrac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}=\dfrac{\sqrt{2{{\cos }^{2}}\dfrac{x}{2}}+\sqrt{2{{\sin }^{2}}\dfrac{x}{2}}}{\sqrt{2{{\cos }^{2}}\dfrac{x}{2}}-\sqrt{2{{\sin }^{2}}\dfrac{x}{2}}}$
Now for the square root values we take their modulus values.
$\dfrac{\sqrt{2{{\cos }^{2}}\dfrac{x}{2}}+\sqrt{2{{\sin }^{2}}\dfrac{x}{2}}}{\sqrt{2{{\cos }^{2}}\dfrac{x}{2}}-\sqrt{2{{\sin }^{2}}\dfrac{x}{2}}}=\dfrac{\sqrt{2}\left| \cos \dfrac{x}{2} \right|+\sqrt{2}\left| \sin \dfrac{x}{2} \right|}{\sqrt{2}\left| \cos \dfrac{x}{2} \right|-\sqrt{2}\left| \sin \dfrac{x}{2} \right|}=\dfrac{\left| \cos \dfrac{x}{2} \right|+\left| \sin \dfrac{x}{2} \right|}{\left| \cos \dfrac{x}{2} \right|-\left| \sin \dfrac{x}{2} \right|}$
As it’s given $\pi < x< 2\pi $, multiplying $\dfrac{1}{2}$ we get $\dfrac{\pi }{2}<\dfrac{x}{2}<\pi $. In that range value of $\cos \dfrac{x}{2}< 0$ and value of $\sin \dfrac{x}{2}> 0$. The modulus values change to \[\left| \cos \dfrac{x}{2} \right|\to -\cos \dfrac{x}{2}\] and $\left| \sin \dfrac{x}{2} \right|\to \sin \dfrac{x}{2}$ in the range of $\dfrac{\pi }{2}< \dfrac{x}{2}< \pi $.
The final equation becomes $\dfrac{\left| \cos \dfrac{x}{2} \right|+\left| \sin \dfrac{x}{2} \right|}{\left| \cos \dfrac{x}{2} \right|-\left| \sin \dfrac{x}{2} \right|}=\dfrac{-\cos \dfrac{x}{2}+\sin \dfrac{x}{2}}{-\cos \dfrac{x}{2}-\sin \dfrac{x}{2}}$.
Now we take the common of $-\cos \dfrac{x}{2}$.
So, $\dfrac{-\cos \dfrac{x}{2}+\sin \dfrac{x}{2}}{-\cos \dfrac{x}{2}-\sin \dfrac{x}{2}}=\dfrac{-\cos \dfrac{x}{2}\left( 1-\tan \dfrac{x}{2} \right)}{-\cos \dfrac{x}{2}\left( 1+\tan \dfrac{x}{2} \right)}$.
We convert the value 1 into $\tan \dfrac{\pi }{4}$ and get $\dfrac{-\cos \dfrac{x}{2}\left( 1-\tan \dfrac{x}{2} \right)}{-\cos \dfrac{x}{2}\left( 1+1.\tan \dfrac{x}{2} \right)}=\dfrac{\tan \dfrac{\pi }{4}-\tan \dfrac{x}{2}}{1+\tan \dfrac{\pi }{4}.\tan \dfrac{x}{2}}$.
Then we use the formula $\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A.\tan B}$
$\dfrac{\tan \dfrac{\pi }{4}-\tan \dfrac{x}{2}}{1+\tan \dfrac{\pi }{4}.\tan \dfrac{x}{2}}=\tan \left( \dfrac{\pi }{4}-\dfrac{x}{2} \right)$.
Therefore, the value of $\dfrac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}$ is $\tan \left( \dfrac{\pi }{4}-\dfrac{x}{2} \right)$.
Note: Instead of taking $-\cos \dfrac{x}{2}$ as common we could have taken $-\sin \dfrac{x}{2}$. The function would have been of $\cot \alpha $ instead of $\tan \alpha $. For any case of root value, we always need to use the modulus value if otherwise mentioned.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the modal class for the following table given class 11 maths CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
