
If we have the roots as $\left( \alpha +\sqrt{\beta } \right)\text{ and }\left( \alpha -\sqrt{\beta } \right)$ of the equation ${{x}^{2}}+px+q=0$ where $\alpha ,\beta ,p,q$ are real, then the roots of the equation $\left( {{p}^{2}}-4q \right)\left( {{p}^{2}}{{x}^{2}}+4px \right)-16q=0$ are
\[\begin{align}
& A.\left( \dfrac{1}{\alpha }+\dfrac{1}{\sqrt{\beta }} \right)\text{ and }\left( \dfrac{1}{\alpha }-\dfrac{1}{\sqrt{\beta }} \right) \\
& B.\left( \dfrac{1}{\sqrt{\alpha }}+\dfrac{1}{\beta } \right)\text{ and }\left( \dfrac{1}{\sqrt{\alpha }}-\dfrac{1}{\beta } \right) \\
& C.\left( \dfrac{1}{\sqrt{\alpha }}+\dfrac{1}{\sqrt{\beta }} \right)\text{ and }\left( \dfrac{1}{\sqrt{\alpha }}-\dfrac{1}{\sqrt{\beta }} \right) \\
\end{align}\]
Answer
464.7k+ views
Hint: In this question, we are given roots of the equation ${{x}^{2}}+px+q=0$ and we need to find roots of the equation $\left( {{p}^{2}}-4q \right)\left( {{p}^{2}}{{x}^{2}}+4px \right)-16q=0$. For this, we will find values of p and q using sum of roots and product of roots formula and then we will simplify the equation whose roots are to be found. After simplifying we will be able to find roots of the equation easily. For an equation $a{{x}^{2}}+bx+c$ sum of roots is given by $\dfrac{-b}{a}$ and product of roots is given by $\dfrac{c}{a}$.
Complete step-by-step solution
Here, we are given the roots of the equation ${{x}^{2}}+px+q=0$ as $\left( \alpha +\sqrt{\beta } \right)\text{ and }\left( \alpha -\sqrt{\beta } \right)$. We need to find roots of the equation $\left( {{p}^{2}}-4q \right)\left( {{p}^{2}}{{x}^{2}}+4px \right)-16q=0$. For this, let us find values of p and q.
Now, we know that, for an equation $a{{x}^{2}}+bx+c$ sum of roots is equal to $\dfrac{-b}{a}$ and product of roots is equal to $\dfrac{c}{a}$.
Comparing ${{x}^{2}}+px+q=0$ we get the sum of roots as -p and product of roots as q.
Since, $\left( \alpha +\sqrt{\beta } \right)\text{ and }\left( \alpha -\sqrt{\beta } \right)$ are roots of the equation ${{x}^{2}}+px+q$. So,
$\left( \alpha +\sqrt{\beta } \right)+\left( \alpha -\sqrt{\beta } \right)=-p\Rightarrow 2\alpha =-p\Rightarrow p=-2\alpha $.
Also, $\left( \alpha +\sqrt{\beta } \right)\left( \alpha -\sqrt{\beta } \right)=q$.
Applying $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ on above equation, we get:
${{\alpha }^{2}}-{{\left( \sqrt{\beta } \right)}^{2}}=q\Rightarrow {{\alpha }^{2}}-\beta =q$.
Hence values of p and q are $-2\alpha \text{ and }\left( {{\alpha }^{2}}-\beta \right)$ respectively.
We need to find roots of the equation $\left( {{p}^{2}}-4q \right)\left( {{p}^{2}}{{x}^{2}}+4px \right)-16q=0$. So let us put values of p and q to simplify equation, we get:
\[\Rightarrow \left( {{\left( -2\alpha \right)}^{2}}-4\left( {{\alpha }^{2}}-\beta \right) \right)\left( {{\left( -2\alpha \right)}^{2}}{{x}^{2}}+4\left( -2\alpha \right)x \right)-16\left( {{\alpha }^{2}}-\beta \right)=0\]
Simplifying and opening brackets we get:
\[\begin{align}
& \Rightarrow \left( 4{{\alpha }^{2}}-4{{\alpha }^{2}}+4\beta \right)\left( 4{{\alpha }^{2}}{{x}^{2}}-8\alpha x \right)-16{{\alpha }^{2}}+16\beta =0 \\
& \Rightarrow \left( 4\beta \right)\left( 4{{\alpha }^{2}}{{x}^{2}}-8\alpha x \right)-16{{\alpha }^{2}}+16\beta =0 \\
& \Rightarrow 16{{\alpha }^{2}}\beta {{x}^{2}}-32\alpha \beta x-16{{\alpha }^{2}}+16\beta =0 \\
\end{align}\]
Taking 16 common from all terms and taking it to the other side, we get:
\[\Rightarrow {{\alpha }^{2}}\beta {{x}^{2}}-2\alpha \beta x-{{\alpha }^{2}}+\beta =0\]
Now taking $\alpha \beta $ common from first two terms, we get:
\[\begin{align}
& \Rightarrow \alpha \beta \left( \alpha {{x}^{2}}-2x \right)-{{\alpha }^{2}}+\beta =0 \\
& \Rightarrow \alpha \beta \left( \alpha {{x}^{2}}-2x \right)={{\alpha }^{2}}-\beta \\
\end{align}\]
Dividing both sides by $\alpha \beta $, we get:
\[\Rightarrow \left( \alpha {{x}^{2}}-2x \right)=\dfrac{{{\alpha }^{2}}-\beta }{\alpha \beta }\]
Now for finding value of x, let us complete the square of left side of the equation, for this, let us first take $\alpha $ common, we get:
\[\Rightarrow \alpha \left( {{x}^{2}}-\dfrac{2}{\alpha }x \right)=\dfrac{{{\alpha }^{2}}-\beta }{\alpha \beta }\]
Now we know that, for completing square in ${{x}^{2}}+bx+c$ we need to add and subtract ${{\left( \dfrac{b}{2} \right)}^{2}}$ term.
So, for above equation, we will add and subtract ${{\left( \dfrac{2}{2\alpha } \right)}^{2}}={{\left( \dfrac{1}{\alpha } \right)}^{2}}$.
Hence equation becomes \[\Rightarrow \alpha \left( {{x}^{2}}-\left( \dfrac{2}{\alpha } \right)x+{{\left( \dfrac{1}{\alpha } \right)}^{2}}-{{\left( \dfrac{1}{\alpha } \right)}^{2}} \right)=\dfrac{{{\alpha }^{2}}-\beta }{\alpha \beta }\].
Now, ${{x}^{2}}-\left( \dfrac{2}{\alpha } \right)x+{{\left( \dfrac{1}{\alpha } \right)}^{2}}$ is of the form ${{a}^{2}}+{{b}^{2}}-2ab$ hence, its equal to ${{\left( a-b \right)}^{2}}$ we get:
\[\Rightarrow \alpha \left( {{\left( x-\dfrac{1}{\alpha } \right)}^{2}}-{{\left( \dfrac{1}{\alpha } \right)}^{2}} \right)=\dfrac{{{\alpha }^{2}}-\beta }{\alpha \beta }\]
Taking $\alpha $ to other side, we get:
\[\begin{align}
& \Rightarrow {{\left( x-\dfrac{1}{\alpha } \right)}^{2}}-{{\left( \dfrac{1}{\alpha } \right)}^{2}}=\dfrac{{{\alpha }^{2}}-\beta }{{{\alpha }^{2}}\beta } \\
& \Rightarrow {{\left( x-\dfrac{1}{\alpha } \right)}^{2}}=\dfrac{{{\alpha }^{2}}-\beta }{{{\alpha }^{2}}\beta }+\dfrac{1}{{{\alpha }^{2}}} \\
\end{align}\]
Now let us simplify right side by taking ${{\alpha }^{2}}\beta $ as LCM we get:
\[\begin{align}
& \Rightarrow {{\left( x-\dfrac{1}{\alpha } \right)}^{2}}=\dfrac{{{\alpha }^{2}}-\beta +\beta }{{{\alpha }^{2}}\beta } \\
& \Rightarrow {{\left( x-\dfrac{1}{\alpha } \right)}^{2}}=\dfrac{{{\alpha }^{2}}}{{{\alpha }^{2}}\beta } \\
& \Rightarrow {{\left( x-\dfrac{1}{\alpha } \right)}^{2}}=\dfrac{1}{\beta } \\
\end{align}\]
Taking square root both sides we get:
\[\Rightarrow x-\dfrac{1}{\alpha }=\pm \dfrac{1}{\sqrt{\beta }}\]
Hence
\[\Rightarrow x-\dfrac{1}{\alpha }=\dfrac{1}{\sqrt{\beta }}\text{ and }x-\dfrac{1}{\alpha }=-\dfrac{1}{\sqrt{\beta }}\].
Solving these two equation we get value of x as,
\[\begin{align}
& \Rightarrow x=\dfrac{1}{\sqrt{\beta }}+\dfrac{1}{\alpha }\text{ and }x=-\dfrac{1}{\sqrt{\beta }}+\dfrac{1}{\alpha } \\
& \Rightarrow x=\dfrac{1}{\alpha }+\dfrac{1}{\sqrt{\beta }}\text{ and }x=\dfrac{1}{\alpha }-\dfrac{1}{\sqrt{\beta }} \\
\end{align}\]
Hence, option A is the correct answer.
Note: Students should note that calculations in this question are very complex so take care while performing them. Students can make the mistake of forgetting negative terms when taking the square root. Take care of signs while using the formula of the sum of roots and product of roots. Make sure to first divide and then square the middle term while completing the square.
Complete step-by-step solution
Here, we are given the roots of the equation ${{x}^{2}}+px+q=0$ as $\left( \alpha +\sqrt{\beta } \right)\text{ and }\left( \alpha -\sqrt{\beta } \right)$. We need to find roots of the equation $\left( {{p}^{2}}-4q \right)\left( {{p}^{2}}{{x}^{2}}+4px \right)-16q=0$. For this, let us find values of p and q.
Now, we know that, for an equation $a{{x}^{2}}+bx+c$ sum of roots is equal to $\dfrac{-b}{a}$ and product of roots is equal to $\dfrac{c}{a}$.
Comparing ${{x}^{2}}+px+q=0$ we get the sum of roots as -p and product of roots as q.
Since, $\left( \alpha +\sqrt{\beta } \right)\text{ and }\left( \alpha -\sqrt{\beta } \right)$ are roots of the equation ${{x}^{2}}+px+q$. So,
$\left( \alpha +\sqrt{\beta } \right)+\left( \alpha -\sqrt{\beta } \right)=-p\Rightarrow 2\alpha =-p\Rightarrow p=-2\alpha $.
Also, $\left( \alpha +\sqrt{\beta } \right)\left( \alpha -\sqrt{\beta } \right)=q$.
Applying $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ on above equation, we get:
${{\alpha }^{2}}-{{\left( \sqrt{\beta } \right)}^{2}}=q\Rightarrow {{\alpha }^{2}}-\beta =q$.
Hence values of p and q are $-2\alpha \text{ and }\left( {{\alpha }^{2}}-\beta \right)$ respectively.
We need to find roots of the equation $\left( {{p}^{2}}-4q \right)\left( {{p}^{2}}{{x}^{2}}+4px \right)-16q=0$. So let us put values of p and q to simplify equation, we get:
\[\Rightarrow \left( {{\left( -2\alpha \right)}^{2}}-4\left( {{\alpha }^{2}}-\beta \right) \right)\left( {{\left( -2\alpha \right)}^{2}}{{x}^{2}}+4\left( -2\alpha \right)x \right)-16\left( {{\alpha }^{2}}-\beta \right)=0\]
Simplifying and opening brackets we get:
\[\begin{align}
& \Rightarrow \left( 4{{\alpha }^{2}}-4{{\alpha }^{2}}+4\beta \right)\left( 4{{\alpha }^{2}}{{x}^{2}}-8\alpha x \right)-16{{\alpha }^{2}}+16\beta =0 \\
& \Rightarrow \left( 4\beta \right)\left( 4{{\alpha }^{2}}{{x}^{2}}-8\alpha x \right)-16{{\alpha }^{2}}+16\beta =0 \\
& \Rightarrow 16{{\alpha }^{2}}\beta {{x}^{2}}-32\alpha \beta x-16{{\alpha }^{2}}+16\beta =0 \\
\end{align}\]
Taking 16 common from all terms and taking it to the other side, we get:
\[\Rightarrow {{\alpha }^{2}}\beta {{x}^{2}}-2\alpha \beta x-{{\alpha }^{2}}+\beta =0\]
Now taking $\alpha \beta $ common from first two terms, we get:
\[\begin{align}
& \Rightarrow \alpha \beta \left( \alpha {{x}^{2}}-2x \right)-{{\alpha }^{2}}+\beta =0 \\
& \Rightarrow \alpha \beta \left( \alpha {{x}^{2}}-2x \right)={{\alpha }^{2}}-\beta \\
\end{align}\]
Dividing both sides by $\alpha \beta $, we get:
\[\Rightarrow \left( \alpha {{x}^{2}}-2x \right)=\dfrac{{{\alpha }^{2}}-\beta }{\alpha \beta }\]
Now for finding value of x, let us complete the square of left side of the equation, for this, let us first take $\alpha $ common, we get:
\[\Rightarrow \alpha \left( {{x}^{2}}-\dfrac{2}{\alpha }x \right)=\dfrac{{{\alpha }^{2}}-\beta }{\alpha \beta }\]
Now we know that, for completing square in ${{x}^{2}}+bx+c$ we need to add and subtract ${{\left( \dfrac{b}{2} \right)}^{2}}$ term.
So, for above equation, we will add and subtract ${{\left( \dfrac{2}{2\alpha } \right)}^{2}}={{\left( \dfrac{1}{\alpha } \right)}^{2}}$.
Hence equation becomes \[\Rightarrow \alpha \left( {{x}^{2}}-\left( \dfrac{2}{\alpha } \right)x+{{\left( \dfrac{1}{\alpha } \right)}^{2}}-{{\left( \dfrac{1}{\alpha } \right)}^{2}} \right)=\dfrac{{{\alpha }^{2}}-\beta }{\alpha \beta }\].
Now, ${{x}^{2}}-\left( \dfrac{2}{\alpha } \right)x+{{\left( \dfrac{1}{\alpha } \right)}^{2}}$ is of the form ${{a}^{2}}+{{b}^{2}}-2ab$ hence, its equal to ${{\left( a-b \right)}^{2}}$ we get:
\[\Rightarrow \alpha \left( {{\left( x-\dfrac{1}{\alpha } \right)}^{2}}-{{\left( \dfrac{1}{\alpha } \right)}^{2}} \right)=\dfrac{{{\alpha }^{2}}-\beta }{\alpha \beta }\]
Taking $\alpha $ to other side, we get:
\[\begin{align}
& \Rightarrow {{\left( x-\dfrac{1}{\alpha } \right)}^{2}}-{{\left( \dfrac{1}{\alpha } \right)}^{2}}=\dfrac{{{\alpha }^{2}}-\beta }{{{\alpha }^{2}}\beta } \\
& \Rightarrow {{\left( x-\dfrac{1}{\alpha } \right)}^{2}}=\dfrac{{{\alpha }^{2}}-\beta }{{{\alpha }^{2}}\beta }+\dfrac{1}{{{\alpha }^{2}}} \\
\end{align}\]
Now let us simplify right side by taking ${{\alpha }^{2}}\beta $ as LCM we get:
\[\begin{align}
& \Rightarrow {{\left( x-\dfrac{1}{\alpha } \right)}^{2}}=\dfrac{{{\alpha }^{2}}-\beta +\beta }{{{\alpha }^{2}}\beta } \\
& \Rightarrow {{\left( x-\dfrac{1}{\alpha } \right)}^{2}}=\dfrac{{{\alpha }^{2}}}{{{\alpha }^{2}}\beta } \\
& \Rightarrow {{\left( x-\dfrac{1}{\alpha } \right)}^{2}}=\dfrac{1}{\beta } \\
\end{align}\]
Taking square root both sides we get:
\[\Rightarrow x-\dfrac{1}{\alpha }=\pm \dfrac{1}{\sqrt{\beta }}\]
Hence
\[\Rightarrow x-\dfrac{1}{\alpha }=\dfrac{1}{\sqrt{\beta }}\text{ and }x-\dfrac{1}{\alpha }=-\dfrac{1}{\sqrt{\beta }}\].
Solving these two equation we get value of x as,
\[\begin{align}
& \Rightarrow x=\dfrac{1}{\sqrt{\beta }}+\dfrac{1}{\alpha }\text{ and }x=-\dfrac{1}{\sqrt{\beta }}+\dfrac{1}{\alpha } \\
& \Rightarrow x=\dfrac{1}{\alpha }+\dfrac{1}{\sqrt{\beta }}\text{ and }x=\dfrac{1}{\alpha }-\dfrac{1}{\sqrt{\beta }} \\
\end{align}\]
Hence, option A is the correct answer.
Note: Students should note that calculations in this question are very complex so take care while performing them. Students can make the mistake of forgetting negative terms when taking the square root. Take care of signs while using the formula of the sum of roots and product of roots. Make sure to first divide and then square the middle term while completing the square.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Define least count of vernier callipers How do you class 11 physics CBSE
