
If we have the expression \[\dfrac{{\left( {{\text{ }}a{\text{ }} + {\text{ }}bx{\text{ }}} \right){\text{ }}}}{{\left( {{\text{ }}a{\text{ }} - {\text{ }}bx{\text{ }}} \right)}} = \dfrac{{\left( {{\text{ }}b{\text{ }} + {\text{ }}cx{\text{ }}} \right)}}{{\left( {{\text{ }}b{\text{ }} - {\text{ }}cx{\text{ }}} \right)}}{\text{ }} = {\text{ }}\dfrac{{\left( {{\text{ }}c{\text{ }} + {\text{ }}dx{\text{ }}} \right){\text{ }}}}{{\left( {{\text{ }}c{\text{ }} - {\text{ }}dx{\text{ }}} \right)}},\]\[\left( {x{\text{ }} \ne {\text{ }}0} \right)\]then \[a,{\text{ }}b,{\text{ }}c,{\text{ }}d\]are in
\[\left( 1 \right)\]\[AP\]
\[\left( 2 \right)\]\[GP\]
\[\left( 3 \right)\]\[HP\]
\[\left( 4 \right)\]\[None{\text{ }}of{\text{ }}these\]
Answer
500.7k+ views
Hint: We have to find the relation between \[a{\text{ }},{\text{ }}b{\text{ }},{\text{ }}c\]and\[d\]. We have to compute the relation between these four variables using the given expression . We should have the knowledge of the concept of arithmetic progression\[\left( {A.P.} \right)\], geometric progression\[\left( {G.P.} \right)\], harmonic progression\[\left( {H.P.} \right)\]. we should also have the concept of the mean of the progressions . Solving the expression we can compute the relation between \[a{\text{ }},{\text{ }}b{\text{ }},{\text{ }}c\] and \[d\].
Complete step-by-step solution:
For the terms of a given series to be in G.P. the common ratio between the terms of the series should be the same for all the two consecutive terms of the series . The ratio of the second term to the first term of the given series should be the same as that of the ratio of the third term to the second term of the given series .
Given :
\[\dfrac{{\left( {{\text{ }}a{\text{ }} + {\text{ }}bx{\text{ }}} \right){\text{ }}}}{{\left( {{\text{ }}a{\text{ }} - {\text{ }}bx{\text{ }}} \right)}} = \dfrac{{\left( {{\text{ }}b{\text{ }} + {\text{ }}cx{\text{ }}} \right)}}{{\left( {{\text{ }}b{\text{ }} - {\text{ }}cx{\text{ }}} \right)}}{\text{ }} = {\text{ }}\dfrac{{\left( {{\text{ }}c{\text{ }} + {\text{ }}dx{\text{ }}} \right){\text{ }}}}{{\left( {{\text{ }}c{\text{ }} - {\text{ }}dx{\text{ }}} \right)}}\]
Taking two terms at a time . Let us take the first two terms of the expression , we get
\[\dfrac{{\left( {{\text{ }}a{\text{ }} + {\text{ }}bx{\text{ }}} \right){\text{ }}}}{{\left( {{\text{ }}a{\text{ }} - {\text{ }}bx{\text{ }}} \right)}} = \dfrac{{\left( {{\text{ }}b{\text{ }} + {\text{ }}cx{\text{ }}} \right)}}{{\left( {{\text{ }}b{\text{ }} - {\text{ }}cx{\text{ }}} \right)}}{\text{ }}\]
Cross multiplying the terms , we get
\[\left( {{\text{ }}a{\text{ }} + {\text{ }}bx{\text{ }}} \right){\text{ }} \times {\text{ }}\left( {{\text{ }}b{\text{ }} - {\text{ }}cx{\text{ }}} \right){\text{ }} = {\text{ }}\left( {{\text{ }}b{\text{ }} + {\text{ }}cx{\text{ }}} \right){\text{ }} \times {\text{ }}\left( {{\text{ }}a{\text{ }} - {\text{ }}bx{\text{ }}} \right)\]
Expanding the terms , we get
$ab + {b^2} \times x - acx - bc \times {x^2} = ba + acx - {b^2} \times x - bc \times {x^2}$
After cancelling the like terms , we get
${b^2} \times x - acx = acx - {b^2} \times x$
On simplifying , we get
${b^2} \times x = acx$
${b^2} = ac$———(1)
From \[\left( 1 \right)\]we conclude that \[a{\text{ }},{\text{ }}b\]and $c$ are in G.P.
Similarly taking second and third term , we get
\[\dfrac{{\left( {{\text{ }}b{\text{ }} + {\text{ }}cx{\text{ }}} \right)}}{{\left( {{\text{ }}b{\text{ }} - {\text{ }}cx{\text{ }}} \right)}}{\text{ }} = {\text{ }}\dfrac{{\left( {{\text{ }}c{\text{ }} + {\text{ }}dx{\text{ }}} \right){\text{ }}}}{{\left( {{\text{ }}c{\text{ }} - {\text{ }}dx{\text{ }}} \right)}}\]
Cross multiplying the terms , we get
\[\left( {{\text{ }}b{\text{ }} + {\text{ }}cx{\text{ }}} \right){\text{ }} \times {\text{ }}\left( {{\text{ }}c{\text{ }} - {\text{ }}dx{\text{ }}} \right){\text{ }} = {\text{ }}\left( {{\text{ }}c{\text{ }} + {\text{ }}dx{\text{ }}} \right){\text{ }} \times {\text{ }}\left( {{\text{ }}b{\text{ }} - {\text{ }}cx{\text{ }}} \right)\]
Expanding the terms , we get
$bc + {c^2} \times x - bdx - cd \times {x^2} = cb + bdx - {c^2} \times x - cd \times {x^2}$
After cancelling the like terms , we get
${c^2} \times x - bdx = bdx - {c^2} \times x$
On simplifying , we get
${c^2} \times x = bdx$
${c^2} = bd$———(2)
From \[\left( 2 \right)\]we conclude that \[b{\text{ }},{\text{ }}c\]and $d$ are in (G.P.) .
From\[\left( 1 \right)\], we get
\[{\text{ }}\dfrac{b}{c} = {\text{ }}\dfrac{a}{b}\]———(3)
From\[\left( 2 \right)\], we get
\[\dfrac{b}{c}{\text{ }} = \dfrac{c}{d}\]———(4)
From \[\left( 3 \right)\]and\[\left( 4 \right)\], we get
a / b = c / d
From the relations , we get
\[\dfrac{a}{b}{\text{ }} = {\text{ }}\dfrac{b}{c}{\text{ }} = \;\dfrac{c}{d}\]
Thus \[a{\text{ }},{\text{ }}b{\text{ }},{\text{ }}c\]and $d$ are in a geometric progression \[\left( {G.P.} \right)\]
Hence , the correct option is\[\left( 2 \right)\].
Note: For the terms of a given series to be in G.P. the common ratio between the terms of the series should be the same for all the two consecutive terms of the series . The ratio of the second term to the first term of the given series should be the same as that of the ratio of the third term to the second term of the given series .
The formula of mean of the three progression is given as :
\[\left( 1 \right){\text{ }}A.P.\]
Arithmetic mean \[ = {\text{ }}\dfrac{{\left( {{\text{ }}a{\text{ }} + {\text{ }}b{\text{ }}} \right)}}{2}\]
\[\left( 2 \right){\text{ }}G.P.\]
Geometric mean $ = \sqrt {(b \times c)} $
\[\left( 3 \right){\text{ }}H.P.\]
Harmonic mean = \[\dfrac{{2{\text{ }}ab}}{{\left( {{\text{ }}a{\text{ }} + {\text{ }}b{\text{ }}} \right)}}\].
Complete step-by-step solution:
For the terms of a given series to be in G.P. the common ratio between the terms of the series should be the same for all the two consecutive terms of the series . The ratio of the second term to the first term of the given series should be the same as that of the ratio of the third term to the second term of the given series .
Given :
\[\dfrac{{\left( {{\text{ }}a{\text{ }} + {\text{ }}bx{\text{ }}} \right){\text{ }}}}{{\left( {{\text{ }}a{\text{ }} - {\text{ }}bx{\text{ }}} \right)}} = \dfrac{{\left( {{\text{ }}b{\text{ }} + {\text{ }}cx{\text{ }}} \right)}}{{\left( {{\text{ }}b{\text{ }} - {\text{ }}cx{\text{ }}} \right)}}{\text{ }} = {\text{ }}\dfrac{{\left( {{\text{ }}c{\text{ }} + {\text{ }}dx{\text{ }}} \right){\text{ }}}}{{\left( {{\text{ }}c{\text{ }} - {\text{ }}dx{\text{ }}} \right)}}\]
Taking two terms at a time . Let us take the first two terms of the expression , we get
\[\dfrac{{\left( {{\text{ }}a{\text{ }} + {\text{ }}bx{\text{ }}} \right){\text{ }}}}{{\left( {{\text{ }}a{\text{ }} - {\text{ }}bx{\text{ }}} \right)}} = \dfrac{{\left( {{\text{ }}b{\text{ }} + {\text{ }}cx{\text{ }}} \right)}}{{\left( {{\text{ }}b{\text{ }} - {\text{ }}cx{\text{ }}} \right)}}{\text{ }}\]
Cross multiplying the terms , we get
\[\left( {{\text{ }}a{\text{ }} + {\text{ }}bx{\text{ }}} \right){\text{ }} \times {\text{ }}\left( {{\text{ }}b{\text{ }} - {\text{ }}cx{\text{ }}} \right){\text{ }} = {\text{ }}\left( {{\text{ }}b{\text{ }} + {\text{ }}cx{\text{ }}} \right){\text{ }} \times {\text{ }}\left( {{\text{ }}a{\text{ }} - {\text{ }}bx{\text{ }}} \right)\]
Expanding the terms , we get
$ab + {b^2} \times x - acx - bc \times {x^2} = ba + acx - {b^2} \times x - bc \times {x^2}$
After cancelling the like terms , we get
${b^2} \times x - acx = acx - {b^2} \times x$
On simplifying , we get
${b^2} \times x = acx$
${b^2} = ac$———(1)
From \[\left( 1 \right)\]we conclude that \[a{\text{ }},{\text{ }}b\]and $c$ are in G.P.
Similarly taking second and third term , we get
\[\dfrac{{\left( {{\text{ }}b{\text{ }} + {\text{ }}cx{\text{ }}} \right)}}{{\left( {{\text{ }}b{\text{ }} - {\text{ }}cx{\text{ }}} \right)}}{\text{ }} = {\text{ }}\dfrac{{\left( {{\text{ }}c{\text{ }} + {\text{ }}dx{\text{ }}} \right){\text{ }}}}{{\left( {{\text{ }}c{\text{ }} - {\text{ }}dx{\text{ }}} \right)}}\]
Cross multiplying the terms , we get
\[\left( {{\text{ }}b{\text{ }} + {\text{ }}cx{\text{ }}} \right){\text{ }} \times {\text{ }}\left( {{\text{ }}c{\text{ }} - {\text{ }}dx{\text{ }}} \right){\text{ }} = {\text{ }}\left( {{\text{ }}c{\text{ }} + {\text{ }}dx{\text{ }}} \right){\text{ }} \times {\text{ }}\left( {{\text{ }}b{\text{ }} - {\text{ }}cx{\text{ }}} \right)\]
Expanding the terms , we get
$bc + {c^2} \times x - bdx - cd \times {x^2} = cb + bdx - {c^2} \times x - cd \times {x^2}$
After cancelling the like terms , we get
${c^2} \times x - bdx = bdx - {c^2} \times x$
On simplifying , we get
${c^2} \times x = bdx$
${c^2} = bd$———(2)
From \[\left( 2 \right)\]we conclude that \[b{\text{ }},{\text{ }}c\]and $d$ are in (G.P.) .
From\[\left( 1 \right)\], we get
\[{\text{ }}\dfrac{b}{c} = {\text{ }}\dfrac{a}{b}\]———(3)
From\[\left( 2 \right)\], we get
\[\dfrac{b}{c}{\text{ }} = \dfrac{c}{d}\]———(4)
From \[\left( 3 \right)\]and\[\left( 4 \right)\], we get
a / b = c / d
From the relations , we get
\[\dfrac{a}{b}{\text{ }} = {\text{ }}\dfrac{b}{c}{\text{ }} = \;\dfrac{c}{d}\]
Thus \[a{\text{ }},{\text{ }}b{\text{ }},{\text{ }}c\]and $d$ are in a geometric progression \[\left( {G.P.} \right)\]
Hence , the correct option is\[\left( 2 \right)\].
Note: For the terms of a given series to be in G.P. the common ratio between the terms of the series should be the same for all the two consecutive terms of the series . The ratio of the second term to the first term of the given series should be the same as that of the ratio of the third term to the second term of the given series .
The formula of mean of the three progression is given as :
\[\left( 1 \right){\text{ }}A.P.\]
Arithmetic mean \[ = {\text{ }}\dfrac{{\left( {{\text{ }}a{\text{ }} + {\text{ }}b{\text{ }}} \right)}}{2}\]
\[\left( 2 \right){\text{ }}G.P.\]
Geometric mean $ = \sqrt {(b \times c)} $
\[\left( 3 \right){\text{ }}H.P.\]
Harmonic mean = \[\dfrac{{2{\text{ }}ab}}{{\left( {{\text{ }}a{\text{ }} + {\text{ }}b{\text{ }}} \right)}}\].
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What are the factors of 100 class 7 maths CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE

Write a letter to the editor of the national daily class 7 english CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE


