
If we have sum of two angles as ($\theta + \phi = \dfrac{\pi }{4}$), then the value of $\left( {1 + \tan \theta } \right) \times \left( {1 + \tan \phi } \right)$ is....
Answer
597k+ views
Hint – In this particular type of question use the concept that from the q=given condition evaluate the value of any variable in terms of other variable and substitute it into the given equation which we have to solve then use the property of tan i.e. $\tan (A – B) =\dfrac {(\tan A – \tan B)}{(1 + \tan A \tan B)}$ and use the value of tan$\dfrac{\pi }{4}$ which is equal to 1 so use these concepts to reach the solution of the question.
Complete step-by-step solution -
We have to find the value of $\left( {1 + \tan \theta } \right) \times \left( {1 + \tan \phi } \right)$............................ (1)
Given equation:
$\theta + \phi = \dfrac{\pi }{4}$
So from here, ($\phi = \dfrac{\pi }{4} - \theta $).
Now substitute this value in equation (1) we have,
$ \Rightarrow \left( {1 + \tan \theta } \right) \times \left( {1 + \tan \phi } \right) = \left( {1 + \tan \theta } \right)\left( {1 + \tan \left( {\dfrac{\pi }{4} - \theta } \right)} \right)$
Now as we know that $\tan (A – B) =\dfrac {(\tan A – \tan B)}{(1 + \tan A \tan B)}$ so use this property in the above equation we have,
$ \Rightarrow \left( {1 + \tan \theta } \right) \times \left( {1 + \tan \phi } \right) = \left( {1 + \tan \theta } \right)\left( {1 + \dfrac{{\tan \dfrac{\pi }{4} - \tan \theta }}{{1 + \tan \dfrac{\pi }{4}\tan \theta }}} \right)$
Now as we know that the value of ($\tan \dfrac{\pi }{4}$ = 1) so use this value in the above equation we have,
$ \Rightarrow \left( {1 + \tan \theta } \right) \times \left( {1 + \tan \phi } \right) = \left( {1 + \tan \theta } \right)\left( {1 + \dfrac{{1 - \tan \theta }}{{1 + \tan \theta }}} \right)$
Now simplify this we have,
$ \Rightarrow \left( {1 + \tan \theta } \right) \times \left( {1 + \tan \phi } \right) = \left( {1 + \tan \theta } \right)\left( {\dfrac{{1 + \tan \theta + 1 - \tan \theta }}{{1 + \tan \theta }}} \right)$
$ \Rightarrow \left( {1 + \tan \theta } \right) \times \left( {1 + \tan \phi } \right) = \left( {1 + \tan \theta } \right)\left( {\dfrac{{1 + 1}}{{1 + \tan \theta }}} \right)$
$ \Rightarrow \left( {1 + \tan \theta } \right) \times \left( {1 + \tan \phi } \right) = 2$
So this is the required value of the given equation.
So this is the required answer.
Note – Whenever we face such types of questions the key concept we have to remember is that always recall all the basic trigonometric properties which can be proven very helpful to solve these types of problems so first use the basic property of tan as above applied then use the standard value of tan$\dfrac{\pi }{4}$ as above and simplify as above, we will get the required answer.
Complete step-by-step solution -
We have to find the value of $\left( {1 + \tan \theta } \right) \times \left( {1 + \tan \phi } \right)$............................ (1)
Given equation:
$\theta + \phi = \dfrac{\pi }{4}$
So from here, ($\phi = \dfrac{\pi }{4} - \theta $).
Now substitute this value in equation (1) we have,
$ \Rightarrow \left( {1 + \tan \theta } \right) \times \left( {1 + \tan \phi } \right) = \left( {1 + \tan \theta } \right)\left( {1 + \tan \left( {\dfrac{\pi }{4} - \theta } \right)} \right)$
Now as we know that $\tan (A – B) =\dfrac {(\tan A – \tan B)}{(1 + \tan A \tan B)}$ so use this property in the above equation we have,
$ \Rightarrow \left( {1 + \tan \theta } \right) \times \left( {1 + \tan \phi } \right) = \left( {1 + \tan \theta } \right)\left( {1 + \dfrac{{\tan \dfrac{\pi }{4} - \tan \theta }}{{1 + \tan \dfrac{\pi }{4}\tan \theta }}} \right)$
Now as we know that the value of ($\tan \dfrac{\pi }{4}$ = 1) so use this value in the above equation we have,
$ \Rightarrow \left( {1 + \tan \theta } \right) \times \left( {1 + \tan \phi } \right) = \left( {1 + \tan \theta } \right)\left( {1 + \dfrac{{1 - \tan \theta }}{{1 + \tan \theta }}} \right)$
Now simplify this we have,
$ \Rightarrow \left( {1 + \tan \theta } \right) \times \left( {1 + \tan \phi } \right) = \left( {1 + \tan \theta } \right)\left( {\dfrac{{1 + \tan \theta + 1 - \tan \theta }}{{1 + \tan \theta }}} \right)$
$ \Rightarrow \left( {1 + \tan \theta } \right) \times \left( {1 + \tan \phi } \right) = \left( {1 + \tan \theta } \right)\left( {\dfrac{{1 + 1}}{{1 + \tan \theta }}} \right)$
$ \Rightarrow \left( {1 + \tan \theta } \right) \times \left( {1 + \tan \phi } \right) = 2$
So this is the required value of the given equation.
So this is the required answer.
Note – Whenever we face such types of questions the key concept we have to remember is that always recall all the basic trigonometric properties which can be proven very helpful to solve these types of problems so first use the basic property of tan as above applied then use the standard value of tan$\dfrac{\pi }{4}$ as above and simplify as above, we will get the required answer.
Recently Updated Pages
Questions & Answers - Ask your doubts

Master Class 9 Social Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

