
If we have given ${}^{n}{{C}_{3}}+{}^{n}{{C}_{4}}>{}^{n+1}{{C}_{3}}$, then which of the following is true?
(a) n > 6
(b) n > 7
(c) n < 6
(d) None of these.
Answer
590.7k+ views
Hint: We start solving the problem by substituting ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ in place of ${}^{n}{{C}_{3}}$, ${}^{n}{{C}_{4}}$ and ${}^{n+1}{{C}_{3}}$. We now take the common terms of multiplication on both sides and compare the remaining terms. Now we make addition and subtraction operations on both sides and make the calculations required to get the required result for ‘n’.
Complete step by step answer:
We have given that ${}^{n}{{C}_{3}}+{}^{n}{{C}_{4}}>{}^{n+1}{{C}_{3}}$, and we need to find the value of ‘n’.
$\Rightarrow $ ${}^{n}{{C}_{3}}+{}^{n}{{C}_{4}}>{}^{n+1}{{C}_{3}}$.
We know that the value of ${}^{n}{{C}_{r}}$ is given as ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
$\Rightarrow $ $\dfrac{n!}{3!\left( n-3 \right)!}+\dfrac{n!}{4!\left( n-4 \right)!}>\dfrac{\left( n+1 \right)!}{3!\left( n+1-3 \right)!}$.
$\Rightarrow $ $\dfrac{n!}{3!\left( n-3 \right)!}+\dfrac{n!}{4!\left( n-4 \right)!}>\dfrac{\left( n+1 \right)!}{3!\left( n-2 \right)!}$.
We know that a! is defined as $a!=a.\left( a-1 \right).\left( a-2 \right)......3.2.1$ and the value of (n-2) is greater than the value of (n-3) for any value of n $\left( n>o \right)$. Also, the value of (n-4) is less than the value of (n-3) and (n-2) for any value of n $\left( n>o \right)$. We also know that $a!=a\times \left( a-1 \right)!=a\times \left( a-1 \right)\times \left( a-2 \right)!$.
$\Rightarrow $ $\dfrac{n!}{3!\left( n-4 \right)!}\left( \dfrac{1}{\left( n-3 \right)}+\dfrac{1}{4} \right)>\dfrac{n!}{3!\left( n-4 \right)!}.\left( \dfrac{\left( n+1 \right)}{\left( n-3 \right).\left( n-2 \right)} \right)$.
$\Rightarrow $ $\left( \dfrac{4+\left( n-3 \right)}{4.\left( n-3 \right)} \right)>\left( \dfrac{\left( n+1 \right)}{\left( n-3 \right).\left( n-2 \right)} \right)$.
$\Rightarrow $ $\left( \dfrac{\left( n+1 \right)}{4.\left( n-3 \right)} \right)>\left( \dfrac{\left( n+1 \right)}{\left( n-3 \right).\left( n-2 \right)} \right)$.
$\Rightarrow $ $\left( \dfrac{1}{4} \right)>\left( \dfrac{1}{\left( n-2 \right)} \right)$.
$\Rightarrow $ (n – 2) > 4.
$\Rightarrow $ n > 4 + 2.
$\Rightarrow $ n > 6.
We have found the value of interval for n as n > 6.
So, the correct answer is “Option A”.
Note: We can solve the problems alternatively as follows:
$\Rightarrow $ ${}^{n}{{C}_{3}}+{}^{n}{{C}_{4}}>{}^{n+1}{{C}_{3}}$ -(1).
We use the result ${}^{n}{{C}_{r-1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r}}$ in equation (1).
$\Rightarrow $ ${}^{n+1}{{C}_{4}}>{}^{n+1}{{C}_{3}}$. Now, we use ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
$\Rightarrow $ $\dfrac{\left( n+1 \right)!}{4!\left( n+1-4 \right)!}>\dfrac{\left( n+1 \right)!}{3!\left( n+1-3 \right)!}$.
$\Rightarrow $ $\dfrac{\left( n+1 \right)!}{4!\left( n-3 \right)!}>\dfrac{\left( n+1 \right)!}{3!\left( n-2 \right)!}$.
$\Rightarrow $ $\dfrac{1}{4}>\dfrac{1}{\left( n-2 \right)}$.
$\Rightarrow $ (n – 2) > 4.
$\Rightarrow $ n > 4 + 2.
$\Rightarrow $ n > 6.
We have found the value of interval for n as n > 6.
Complete step by step answer:
We have given that ${}^{n}{{C}_{3}}+{}^{n}{{C}_{4}}>{}^{n+1}{{C}_{3}}$, and we need to find the value of ‘n’.
$\Rightarrow $ ${}^{n}{{C}_{3}}+{}^{n}{{C}_{4}}>{}^{n+1}{{C}_{3}}$.
We know that the value of ${}^{n}{{C}_{r}}$ is given as ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
$\Rightarrow $ $\dfrac{n!}{3!\left( n-3 \right)!}+\dfrac{n!}{4!\left( n-4 \right)!}>\dfrac{\left( n+1 \right)!}{3!\left( n+1-3 \right)!}$.
$\Rightarrow $ $\dfrac{n!}{3!\left( n-3 \right)!}+\dfrac{n!}{4!\left( n-4 \right)!}>\dfrac{\left( n+1 \right)!}{3!\left( n-2 \right)!}$.
We know that a! is defined as $a!=a.\left( a-1 \right).\left( a-2 \right)......3.2.1$ and the value of (n-2) is greater than the value of (n-3) for any value of n $\left( n>o \right)$. Also, the value of (n-4) is less than the value of (n-3) and (n-2) for any value of n $\left( n>o \right)$. We also know that $a!=a\times \left( a-1 \right)!=a\times \left( a-1 \right)\times \left( a-2 \right)!$.
$\Rightarrow $ $\dfrac{n!}{3!\left( n-4 \right)!}\left( \dfrac{1}{\left( n-3 \right)}+\dfrac{1}{4} \right)>\dfrac{n!}{3!\left( n-4 \right)!}.\left( \dfrac{\left( n+1 \right)}{\left( n-3 \right).\left( n-2 \right)} \right)$.
$\Rightarrow $ $\left( \dfrac{4+\left( n-3 \right)}{4.\left( n-3 \right)} \right)>\left( \dfrac{\left( n+1 \right)}{\left( n-3 \right).\left( n-2 \right)} \right)$.
$\Rightarrow $ $\left( \dfrac{\left( n+1 \right)}{4.\left( n-3 \right)} \right)>\left( \dfrac{\left( n+1 \right)}{\left( n-3 \right).\left( n-2 \right)} \right)$.
$\Rightarrow $ $\left( \dfrac{1}{4} \right)>\left( \dfrac{1}{\left( n-2 \right)} \right)$.
$\Rightarrow $ (n – 2) > 4.
$\Rightarrow $ n > 4 + 2.
$\Rightarrow $ n > 6.
We have found the value of interval for n as n > 6.
So, the correct answer is “Option A”.
Note: We can solve the problems alternatively as follows:
$\Rightarrow $ ${}^{n}{{C}_{3}}+{}^{n}{{C}_{4}}>{}^{n+1}{{C}_{3}}$ -(1).
We use the result ${}^{n}{{C}_{r-1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r}}$ in equation (1).
$\Rightarrow $ ${}^{n+1}{{C}_{4}}>{}^{n+1}{{C}_{3}}$. Now, we use ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
$\Rightarrow $ $\dfrac{\left( n+1 \right)!}{4!\left( n+1-4 \right)!}>\dfrac{\left( n+1 \right)!}{3!\left( n+1-3 \right)!}$.
$\Rightarrow $ $\dfrac{\left( n+1 \right)!}{4!\left( n-3 \right)!}>\dfrac{\left( n+1 \right)!}{3!\left( n-2 \right)!}$.
$\Rightarrow $ $\dfrac{1}{4}>\dfrac{1}{\left( n-2 \right)}$.
$\Rightarrow $ (n – 2) > 4.
$\Rightarrow $ n > 4 + 2.
$\Rightarrow $ n > 6.
We have found the value of interval for n as n > 6.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

