
If we have given ${}^{n}{{C}_{3}}+{}^{n}{{C}_{4}}>{}^{n+1}{{C}_{3}}$, then which of the following is true?
(a) n > 6
(b) n > 7
(c) n < 6
(d) None of these.
Answer
576k+ views
Hint: We start solving the problem by substituting ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ in place of ${}^{n}{{C}_{3}}$, ${}^{n}{{C}_{4}}$ and ${}^{n+1}{{C}_{3}}$. We now take the common terms of multiplication on both sides and compare the remaining terms. Now we make addition and subtraction operations on both sides and make the calculations required to get the required result for ‘n’.
Complete step by step answer:
We have given that ${}^{n}{{C}_{3}}+{}^{n}{{C}_{4}}>{}^{n+1}{{C}_{3}}$, and we need to find the value of ‘n’.
$\Rightarrow $ ${}^{n}{{C}_{3}}+{}^{n}{{C}_{4}}>{}^{n+1}{{C}_{3}}$.
We know that the value of ${}^{n}{{C}_{r}}$ is given as ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
$\Rightarrow $ $\dfrac{n!}{3!\left( n-3 \right)!}+\dfrac{n!}{4!\left( n-4 \right)!}>\dfrac{\left( n+1 \right)!}{3!\left( n+1-3 \right)!}$.
$\Rightarrow $ $\dfrac{n!}{3!\left( n-3 \right)!}+\dfrac{n!}{4!\left( n-4 \right)!}>\dfrac{\left( n+1 \right)!}{3!\left( n-2 \right)!}$.
We know that a! is defined as $a!=a.\left( a-1 \right).\left( a-2 \right)......3.2.1$ and the value of (n-2) is greater than the value of (n-3) for any value of n $\left( n>o \right)$. Also, the value of (n-4) is less than the value of (n-3) and (n-2) for any value of n $\left( n>o \right)$. We also know that $a!=a\times \left( a-1 \right)!=a\times \left( a-1 \right)\times \left( a-2 \right)!$.
$\Rightarrow $ $\dfrac{n!}{3!\left( n-4 \right)!}\left( \dfrac{1}{\left( n-3 \right)}+\dfrac{1}{4} \right)>\dfrac{n!}{3!\left( n-4 \right)!}.\left( \dfrac{\left( n+1 \right)}{\left( n-3 \right).\left( n-2 \right)} \right)$.
$\Rightarrow $ $\left( \dfrac{4+\left( n-3 \right)}{4.\left( n-3 \right)} \right)>\left( \dfrac{\left( n+1 \right)}{\left( n-3 \right).\left( n-2 \right)} \right)$.
$\Rightarrow $ $\left( \dfrac{\left( n+1 \right)}{4.\left( n-3 \right)} \right)>\left( \dfrac{\left( n+1 \right)}{\left( n-3 \right).\left( n-2 \right)} \right)$.
$\Rightarrow $ $\left( \dfrac{1}{4} \right)>\left( \dfrac{1}{\left( n-2 \right)} \right)$.
$\Rightarrow $ (n – 2) > 4.
$\Rightarrow $ n > 4 + 2.
$\Rightarrow $ n > 6.
We have found the value of interval for n as n > 6.
So, the correct answer is “Option A”.
Note: We can solve the problems alternatively as follows:
$\Rightarrow $ ${}^{n}{{C}_{3}}+{}^{n}{{C}_{4}}>{}^{n+1}{{C}_{3}}$ -(1).
We use the result ${}^{n}{{C}_{r-1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r}}$ in equation (1).
$\Rightarrow $ ${}^{n+1}{{C}_{4}}>{}^{n+1}{{C}_{3}}$. Now, we use ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
$\Rightarrow $ $\dfrac{\left( n+1 \right)!}{4!\left( n+1-4 \right)!}>\dfrac{\left( n+1 \right)!}{3!\left( n+1-3 \right)!}$.
$\Rightarrow $ $\dfrac{\left( n+1 \right)!}{4!\left( n-3 \right)!}>\dfrac{\left( n+1 \right)!}{3!\left( n-2 \right)!}$.
$\Rightarrow $ $\dfrac{1}{4}>\dfrac{1}{\left( n-2 \right)}$.
$\Rightarrow $ (n – 2) > 4.
$\Rightarrow $ n > 4 + 2.
$\Rightarrow $ n > 6.
We have found the value of interval for n as n > 6.
Complete step by step answer:
We have given that ${}^{n}{{C}_{3}}+{}^{n}{{C}_{4}}>{}^{n+1}{{C}_{3}}$, and we need to find the value of ‘n’.
$\Rightarrow $ ${}^{n}{{C}_{3}}+{}^{n}{{C}_{4}}>{}^{n+1}{{C}_{3}}$.
We know that the value of ${}^{n}{{C}_{r}}$ is given as ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
$\Rightarrow $ $\dfrac{n!}{3!\left( n-3 \right)!}+\dfrac{n!}{4!\left( n-4 \right)!}>\dfrac{\left( n+1 \right)!}{3!\left( n+1-3 \right)!}$.
$\Rightarrow $ $\dfrac{n!}{3!\left( n-3 \right)!}+\dfrac{n!}{4!\left( n-4 \right)!}>\dfrac{\left( n+1 \right)!}{3!\left( n-2 \right)!}$.
We know that a! is defined as $a!=a.\left( a-1 \right).\left( a-2 \right)......3.2.1$ and the value of (n-2) is greater than the value of (n-3) for any value of n $\left( n>o \right)$. Also, the value of (n-4) is less than the value of (n-3) and (n-2) for any value of n $\left( n>o \right)$. We also know that $a!=a\times \left( a-1 \right)!=a\times \left( a-1 \right)\times \left( a-2 \right)!$.
$\Rightarrow $ $\dfrac{n!}{3!\left( n-4 \right)!}\left( \dfrac{1}{\left( n-3 \right)}+\dfrac{1}{4} \right)>\dfrac{n!}{3!\left( n-4 \right)!}.\left( \dfrac{\left( n+1 \right)}{\left( n-3 \right).\left( n-2 \right)} \right)$.
$\Rightarrow $ $\left( \dfrac{4+\left( n-3 \right)}{4.\left( n-3 \right)} \right)>\left( \dfrac{\left( n+1 \right)}{\left( n-3 \right).\left( n-2 \right)} \right)$.
$\Rightarrow $ $\left( \dfrac{\left( n+1 \right)}{4.\left( n-3 \right)} \right)>\left( \dfrac{\left( n+1 \right)}{\left( n-3 \right).\left( n-2 \right)} \right)$.
$\Rightarrow $ $\left( \dfrac{1}{4} \right)>\left( \dfrac{1}{\left( n-2 \right)} \right)$.
$\Rightarrow $ (n – 2) > 4.
$\Rightarrow $ n > 4 + 2.
$\Rightarrow $ n > 6.
We have found the value of interval for n as n > 6.
So, the correct answer is “Option A”.
Note: We can solve the problems alternatively as follows:
$\Rightarrow $ ${}^{n}{{C}_{3}}+{}^{n}{{C}_{4}}>{}^{n+1}{{C}_{3}}$ -(1).
We use the result ${}^{n}{{C}_{r-1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r}}$ in equation (1).
$\Rightarrow $ ${}^{n+1}{{C}_{4}}>{}^{n+1}{{C}_{3}}$. Now, we use ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
$\Rightarrow $ $\dfrac{\left( n+1 \right)!}{4!\left( n+1-4 \right)!}>\dfrac{\left( n+1 \right)!}{3!\left( n+1-3 \right)!}$.
$\Rightarrow $ $\dfrac{\left( n+1 \right)!}{4!\left( n-3 \right)!}>\dfrac{\left( n+1 \right)!}{3!\left( n-2 \right)!}$.
$\Rightarrow $ $\dfrac{1}{4}>\dfrac{1}{\left( n-2 \right)}$.
$\Rightarrow $ (n – 2) > 4.
$\Rightarrow $ n > 4 + 2.
$\Rightarrow $ n > 6.
We have found the value of interval for n as n > 6.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

