
If we have given ${}^{n}{{C}_{3}}+{}^{n}{{C}_{4}}>{}^{n+1}{{C}_{3}}$, then which of the following is true?
(a) n > 6
(b) n > 7
(c) n < 6
(d) None of these.
Answer
512.1k+ views
Hint: We start solving the problem by substituting ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ in place of ${}^{n}{{C}_{3}}$, ${}^{n}{{C}_{4}}$ and ${}^{n+1}{{C}_{3}}$. We now take the common terms of multiplication on both sides and compare the remaining terms. Now we make addition and subtraction operations on both sides and make the calculations required to get the required result for ‘n’.
Complete step by step answer:
We have given that ${}^{n}{{C}_{3}}+{}^{n}{{C}_{4}}>{}^{n+1}{{C}_{3}}$, and we need to find the value of ‘n’.
$\Rightarrow $ ${}^{n}{{C}_{3}}+{}^{n}{{C}_{4}}>{}^{n+1}{{C}_{3}}$.
We know that the value of ${}^{n}{{C}_{r}}$ is given as ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
$\Rightarrow $ $\dfrac{n!}{3!\left( n-3 \right)!}+\dfrac{n!}{4!\left( n-4 \right)!}>\dfrac{\left( n+1 \right)!}{3!\left( n+1-3 \right)!}$.
$\Rightarrow $ $\dfrac{n!}{3!\left( n-3 \right)!}+\dfrac{n!}{4!\left( n-4 \right)!}>\dfrac{\left( n+1 \right)!}{3!\left( n-2 \right)!}$.
We know that a! is defined as $a!=a.\left( a-1 \right).\left( a-2 \right)......3.2.1$ and the value of (n-2) is greater than the value of (n-3) for any value of n $\left( n>o \right)$. Also, the value of (n-4) is less than the value of (n-3) and (n-2) for any value of n $\left( n>o \right)$. We also know that $a!=a\times \left( a-1 \right)!=a\times \left( a-1 \right)\times \left( a-2 \right)!$.
$\Rightarrow $ $\dfrac{n!}{3!\left( n-4 \right)!}\left( \dfrac{1}{\left( n-3 \right)}+\dfrac{1}{4} \right)>\dfrac{n!}{3!\left( n-4 \right)!}.\left( \dfrac{\left( n+1 \right)}{\left( n-3 \right).\left( n-2 \right)} \right)$.
$\Rightarrow $ $\left( \dfrac{4+\left( n-3 \right)}{4.\left( n-3 \right)} \right)>\left( \dfrac{\left( n+1 \right)}{\left( n-3 \right).\left( n-2 \right)} \right)$.
$\Rightarrow $ $\left( \dfrac{\left( n+1 \right)}{4.\left( n-3 \right)} \right)>\left( \dfrac{\left( n+1 \right)}{\left( n-3 \right).\left( n-2 \right)} \right)$.
$\Rightarrow $ $\left( \dfrac{1}{4} \right)>\left( \dfrac{1}{\left( n-2 \right)} \right)$.
$\Rightarrow $ (n – 2) > 4.
$\Rightarrow $ n > 4 + 2.
$\Rightarrow $ n > 6.
We have found the value of interval for n as n > 6.
So, the correct answer is “Option A”.
Note: We can solve the problems alternatively as follows:
$\Rightarrow $ ${}^{n}{{C}_{3}}+{}^{n}{{C}_{4}}>{}^{n+1}{{C}_{3}}$ -(1).
We use the result ${}^{n}{{C}_{r-1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r}}$ in equation (1).
$\Rightarrow $ ${}^{n+1}{{C}_{4}}>{}^{n+1}{{C}_{3}}$. Now, we use ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
$\Rightarrow $ $\dfrac{\left( n+1 \right)!}{4!\left( n+1-4 \right)!}>\dfrac{\left( n+1 \right)!}{3!\left( n+1-3 \right)!}$.
$\Rightarrow $ $\dfrac{\left( n+1 \right)!}{4!\left( n-3 \right)!}>\dfrac{\left( n+1 \right)!}{3!\left( n-2 \right)!}$.
$\Rightarrow $ $\dfrac{1}{4}>\dfrac{1}{\left( n-2 \right)}$.
$\Rightarrow $ (n – 2) > 4.
$\Rightarrow $ n > 4 + 2.
$\Rightarrow $ n > 6.
We have found the value of interval for n as n > 6.
Complete step by step answer:
We have given that ${}^{n}{{C}_{3}}+{}^{n}{{C}_{4}}>{}^{n+1}{{C}_{3}}$, and we need to find the value of ‘n’.
$\Rightarrow $ ${}^{n}{{C}_{3}}+{}^{n}{{C}_{4}}>{}^{n+1}{{C}_{3}}$.
We know that the value of ${}^{n}{{C}_{r}}$ is given as ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
$\Rightarrow $ $\dfrac{n!}{3!\left( n-3 \right)!}+\dfrac{n!}{4!\left( n-4 \right)!}>\dfrac{\left( n+1 \right)!}{3!\left( n+1-3 \right)!}$.
$\Rightarrow $ $\dfrac{n!}{3!\left( n-3 \right)!}+\dfrac{n!}{4!\left( n-4 \right)!}>\dfrac{\left( n+1 \right)!}{3!\left( n-2 \right)!}$.
We know that a! is defined as $a!=a.\left( a-1 \right).\left( a-2 \right)......3.2.1$ and the value of (n-2) is greater than the value of (n-3) for any value of n $\left( n>o \right)$. Also, the value of (n-4) is less than the value of (n-3) and (n-2) for any value of n $\left( n>o \right)$. We also know that $a!=a\times \left( a-1 \right)!=a\times \left( a-1 \right)\times \left( a-2 \right)!$.
$\Rightarrow $ $\dfrac{n!}{3!\left( n-4 \right)!}\left( \dfrac{1}{\left( n-3 \right)}+\dfrac{1}{4} \right)>\dfrac{n!}{3!\left( n-4 \right)!}.\left( \dfrac{\left( n+1 \right)}{\left( n-3 \right).\left( n-2 \right)} \right)$.
$\Rightarrow $ $\left( \dfrac{4+\left( n-3 \right)}{4.\left( n-3 \right)} \right)>\left( \dfrac{\left( n+1 \right)}{\left( n-3 \right).\left( n-2 \right)} \right)$.
$\Rightarrow $ $\left( \dfrac{\left( n+1 \right)}{4.\left( n-3 \right)} \right)>\left( \dfrac{\left( n+1 \right)}{\left( n-3 \right).\left( n-2 \right)} \right)$.
$\Rightarrow $ $\left( \dfrac{1}{4} \right)>\left( \dfrac{1}{\left( n-2 \right)} \right)$.
$\Rightarrow $ (n – 2) > 4.
$\Rightarrow $ n > 4 + 2.
$\Rightarrow $ n > 6.
We have found the value of interval for n as n > 6.
So, the correct answer is “Option A”.
Note: We can solve the problems alternatively as follows:
$\Rightarrow $ ${}^{n}{{C}_{3}}+{}^{n}{{C}_{4}}>{}^{n+1}{{C}_{3}}$ -(1).
We use the result ${}^{n}{{C}_{r-1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r}}$ in equation (1).
$\Rightarrow $ ${}^{n+1}{{C}_{4}}>{}^{n+1}{{C}_{3}}$. Now, we use ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
$\Rightarrow $ $\dfrac{\left( n+1 \right)!}{4!\left( n+1-4 \right)!}>\dfrac{\left( n+1 \right)!}{3!\left( n+1-3 \right)!}$.
$\Rightarrow $ $\dfrac{\left( n+1 \right)!}{4!\left( n-3 \right)!}>\dfrac{\left( n+1 \right)!}{3!\left( n-2 \right)!}$.
$\Rightarrow $ $\dfrac{1}{4}>\dfrac{1}{\left( n-2 \right)}$.
$\Rightarrow $ (n – 2) > 4.
$\Rightarrow $ n > 4 + 2.
$\Rightarrow $ n > 6.
We have found the value of interval for n as n > 6.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE

Give two reasons to justify a Water at room temperature class 11 chemistry CBSE
