
If we have an equation as $\dfrac{1}{{\left| \!{\underline {\,6 \,}} \right. }} + \dfrac{1}{{\left| \!{\underline {\,7 \,}} \right. }} = \dfrac{x}{{\left| \!{\underline {\,8 \,}} \right. }}$ , find x .
Answer
523.2k+ views
Hint: The given question involves the expansion and simplification of a factorial . The formula of factorial of number n is
$\left| \!{\underline {\,n \,}} \right. = n \times (n - 1) \times (n - 2) \times (n - 3).........3 \times 2 \times 1$
First we expand the factorial of each number into the form containing factorial of smallest number present in problem , that is if we want factorial of 3 in the form involving factorial of 2 that implies , $\left| \!{\underline {\,3 \,}} \right. = 3 \times \left| \!{\underline {\,2 \,}} \right. $ . Later remove the common factorial of small number and then simplify the left part and right part .Then we can acquire the value of x by dividing left part by coefficient of x
Complete step-by-step solution:
To solve this we opt the formula of factorial of 6 , 7 , 8 .
$\dfrac{1}{{\left| \!{\underline {\,6 \,}} \right. }} + \dfrac{1}{{\left| \!{\underline {\,7 \,}} \right. }} = \dfrac{x}{{\left| \!{\underline {\,8 \,}} \right. }} \\
\Rightarrow \dfrac{1}{{\left| \!{\underline {\,6 \,}} \right. }} + \dfrac{1}{{7 \times \left| \!{\underline {\,6 \,}} \right. }} = \dfrac{x}{{8 \times \left| \!{\underline {\,7 \,}} \right. }} \\
\Rightarrow \dfrac{1}{{\left| \!{\underline {\,6 \,}} \right. }} + \dfrac{1}{{7 \times \left| \!{\underline {\,6 \,}} \right. }} = \dfrac{x}{{8 \times 7 \times \left| \!{\underline {\,6 \,}} \right. }} \\
\Rightarrow \dfrac{1}{{\left| \!{\underline {\,6 \,}} \right. }}\left( {1 + \dfrac{1}{7}} \right) = \dfrac{x}{{8 \times 7 \times \left| \!{\underline {\,6 \,}} \right. }} \\
\Rightarrow \left( {1 + \dfrac{1}{7}} \right) = \dfrac{x}{{8 \times 7}} \\
\Rightarrow \dfrac{{7 + 1}}{7} = \dfrac{x}{{8 \times 7}} \\
\Rightarrow \dfrac{8}{7} = \dfrac{x}{{8 \times 7}} \\
\Rightarrow 8 = \dfrac{x}{8} \\
\Rightarrow x = 8 \times 8 \\
\Rightarrow x = 64 \\$
Verification :If the value acquired by solving the equation is x = 64 to the equation $\dfrac{1}{{\left| \!{\underline {\,6 \,}} \right. }} + \dfrac{1}{{\left| \!{\underline {\,7 \,}} \right. }} = \dfrac{x}{{\left| \!{\underline {\,8 \,}} \right. }}$ .
We substitute the value of x in the equation for verifying L. H. S = R. H . S .
$\dfrac{1}{{\left| \!{\underline {\,6 \,}} \right. }} + \dfrac{1}{{\left| \!{\underline {\,7 \,}} \right. }} = \dfrac{{64}}{{\left| \!{\underline {\,8 \,}} \right. }} \\
\Rightarrow \dfrac{1}{{\left| \!{\underline {\,6 \,}} \right. }} + \dfrac{1}{{7 \times \left| \!{\underline {\,6 \,}} \right. }} = \dfrac{{64}}{{\left| \!{\underline {\,8 \,}} \right. }} \\
\Rightarrow \dfrac{1}{{\left| \!{\underline {\,6 \,}} \right. }}\left( {1 + \dfrac{1}{7}} \right) = \dfrac{{64}}{{\left| \!{\underline {\,8 \,}} \right. }} \\
\Rightarrow \dfrac{{7 + 1}}{{7 \times \left| \!{\underline {\,6 \,}} \right. }} = \dfrac{{64}}{{\left| \!{\underline {\,8 \,}} \right. }} \\
\Rightarrow \dfrac{8}{{\left| \!{\underline {\,7 \,}} \right. }} = \dfrac{{64}}{{8 \times \left| \!{\underline {\,7 \,}} \right. }} \\
\Rightarrow \dfrac{8}{{\left| \!{\underline {\,7 \,}} \right. }} = \dfrac{8}{{\left| \!{\underline {\,7 \,}} \right. }} \\$
Hence proved ( L .H .S = R. H .S ). The value of x = 64 for $\dfrac{1}{{\left| \!{\underline {\,
6 \,}} \right. }} + \dfrac{1}{{\left| \!{\underline {\,7 \,}} \right. }} = \dfrac{x}{{\left| \!{\underline {\,8 \,}} \right. }}$ .
Note: The problems involving factorial simplification just need to be solved by expanding factorial of higher number into the form containing factorial of common simpler number. They are generally factorial induced algebraic equations. The important thing to note when it comes to topic of factorial are
$\left| \!{\underline {\,0 \,}} \right. = 1 \\
\left| \!{\underline {\,1 \,}} \right. = 1 \\$
$\left| \!{\underline {\,0 \,}} \right. = 1 \\
\left| \!{\underline {\,1 \,}} \right. = 1 \\
$ and factorial of negative numbers are complex numbers which are difficult to solve so we generally avoid taking factorials of negative numbers.
$\left| \!{\underline {\,n \,}} \right. = n \times (n - 1) \times (n - 2) \times (n - 3).........3 \times 2 \times 1$
First we expand the factorial of each number into the form containing factorial of smallest number present in problem , that is if we want factorial of 3 in the form involving factorial of 2 that implies , $\left| \!{\underline {\,3 \,}} \right. = 3 \times \left| \!{\underline {\,2 \,}} \right. $ . Later remove the common factorial of small number and then simplify the left part and right part .Then we can acquire the value of x by dividing left part by coefficient of x
Complete step-by-step solution:
To solve this we opt the formula of factorial of 6 , 7 , 8 .
$\dfrac{1}{{\left| \!{\underline {\,6 \,}} \right. }} + \dfrac{1}{{\left| \!{\underline {\,7 \,}} \right. }} = \dfrac{x}{{\left| \!{\underline {\,8 \,}} \right. }} \\
\Rightarrow \dfrac{1}{{\left| \!{\underline {\,6 \,}} \right. }} + \dfrac{1}{{7 \times \left| \!{\underline {\,6 \,}} \right. }} = \dfrac{x}{{8 \times \left| \!{\underline {\,7 \,}} \right. }} \\
\Rightarrow \dfrac{1}{{\left| \!{\underline {\,6 \,}} \right. }} + \dfrac{1}{{7 \times \left| \!{\underline {\,6 \,}} \right. }} = \dfrac{x}{{8 \times 7 \times \left| \!{\underline {\,6 \,}} \right. }} \\
\Rightarrow \dfrac{1}{{\left| \!{\underline {\,6 \,}} \right. }}\left( {1 + \dfrac{1}{7}} \right) = \dfrac{x}{{8 \times 7 \times \left| \!{\underline {\,6 \,}} \right. }} \\
\Rightarrow \left( {1 + \dfrac{1}{7}} \right) = \dfrac{x}{{8 \times 7}} \\
\Rightarrow \dfrac{{7 + 1}}{7} = \dfrac{x}{{8 \times 7}} \\
\Rightarrow \dfrac{8}{7} = \dfrac{x}{{8 \times 7}} \\
\Rightarrow 8 = \dfrac{x}{8} \\
\Rightarrow x = 8 \times 8 \\
\Rightarrow x = 64 \\$
Verification :If the value acquired by solving the equation is x = 64 to the equation $\dfrac{1}{{\left| \!{\underline {\,6 \,}} \right. }} + \dfrac{1}{{\left| \!{\underline {\,7 \,}} \right. }} = \dfrac{x}{{\left| \!{\underline {\,8 \,}} \right. }}$ .
We substitute the value of x in the equation for verifying L. H. S = R. H . S .
$\dfrac{1}{{\left| \!{\underline {\,6 \,}} \right. }} + \dfrac{1}{{\left| \!{\underline {\,7 \,}} \right. }} = \dfrac{{64}}{{\left| \!{\underline {\,8 \,}} \right. }} \\
\Rightarrow \dfrac{1}{{\left| \!{\underline {\,6 \,}} \right. }} + \dfrac{1}{{7 \times \left| \!{\underline {\,6 \,}} \right. }} = \dfrac{{64}}{{\left| \!{\underline {\,8 \,}} \right. }} \\
\Rightarrow \dfrac{1}{{\left| \!{\underline {\,6 \,}} \right. }}\left( {1 + \dfrac{1}{7}} \right) = \dfrac{{64}}{{\left| \!{\underline {\,8 \,}} \right. }} \\
\Rightarrow \dfrac{{7 + 1}}{{7 \times \left| \!{\underline {\,6 \,}} \right. }} = \dfrac{{64}}{{\left| \!{\underline {\,8 \,}} \right. }} \\
\Rightarrow \dfrac{8}{{\left| \!{\underline {\,7 \,}} \right. }} = \dfrac{{64}}{{8 \times \left| \!{\underline {\,7 \,}} \right. }} \\
\Rightarrow \dfrac{8}{{\left| \!{\underline {\,7 \,}} \right. }} = \dfrac{8}{{\left| \!{\underline {\,7 \,}} \right. }} \\$
Hence proved ( L .H .S = R. H .S ). The value of x = 64 for $\dfrac{1}{{\left| \!{\underline {\,
6 \,}} \right. }} + \dfrac{1}{{\left| \!{\underline {\,7 \,}} \right. }} = \dfrac{x}{{\left| \!{\underline {\,8 \,}} \right. }}$ .
Note: The problems involving factorial simplification just need to be solved by expanding factorial of higher number into the form containing factorial of common simpler number. They are generally factorial induced algebraic equations. The important thing to note when it comes to topic of factorial are
$\left| \!{\underline {\,0 \,}} \right. = 1 \\
\left| \!{\underline {\,1 \,}} \right. = 1 \\$
$\left| \!{\underline {\,0 \,}} \right. = 1 \\
\left| \!{\underline {\,1 \,}} \right. = 1 \\
$ and factorial of negative numbers are complex numbers which are difficult to solve so we generally avoid taking factorials of negative numbers.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

