
If we have a trigonometric expression \[\dfrac{1}{{\tan 3A - \tan A}} - \dfrac{1}{{\cot 3A - \cot A}} = k\cot 2A\] , then $k$ is equal to
(A) $4$
(B) $3$
(C) $2$
(D) $1$
Answer
497.7k+ views
Hint: From the property of summation and subtraction we write that $2A = 3A - A$ and then we apply $\tan $ on both the sides, we will get $\tan 2A = \tan (3A - A) = \dfrac{{\tan 3A - \tan A}}{{1 + \tan A \times \tan 3A}}$ , now with the help of this identity we can find the value of the required variable $k$ . At first we use the properties of trigonometry that is $\tan A = \dfrac{1}{{\cot A}}$ i.e., $\cot A = \dfrac{1}{{\tan A}}$ . After that we use the above formula and we find the correct option.
Complete step-by-step solution:
The given function \[\dfrac{1}{{\tan 3A - \tan A}} - \dfrac{1}{{\cot 3A - \cot A}} = k\cot 2A\]
Now we use the properties of trigonometry , that is $\cot A = \dfrac{1}{{\cot A}}$ .
Therefore we have
\[\dfrac{1}{{\tan 3A - \tan A}} - \dfrac{1}{{\dfrac{1}{{\tan 3A}} - \dfrac{1}{{\tan A}}}} = k\cot 2A\]
Simplifying the above equation and we get
$ \Rightarrow \dfrac{1}{{\tan 3A - \tan A}} - \dfrac{1}{{\dfrac{{\tan A - \tan 3A}}{{\tan 3A \times \tan A}}}} = k\cot 2A$
Here we use the property of division $\dfrac{1}{{\dfrac{A}{B}}} = \dfrac{B}{A}$ in the above equation and we get
$ \Rightarrow \dfrac{1}{{\tan 3A - \tan A}} - \dfrac{{\tan 3A \times \tan A}}{{\tan A - \tan 3A}} = k\cot 2A$
We know that $A - B = - (B - A)$
Use this property in above equation and we get
$ \Rightarrow \dfrac{1}{{\tan 3A - \tan A}} + \dfrac{{\tan 3A \times \tan A}}{{\tan 3A - \tan A}} = k\cot 2A$
Now we calculate and simplifying the above equation and we get
$ \Rightarrow \dfrac{{1 - \tan 3A \times \tan A}}{{\tan 3A - \tan A}} = k\cot 2A$
$ \Rightarrow \dfrac{1}{{\dfrac{{\tan 3A - \tan A}}{{1 - \tan 3A \times \tan A}}}} = k\cot 2A$
Now we use the formula of $\tan $ i.e., $\tan (3A - A) = \dfrac{{\tan 3A - \tan A}}{{1 + \tan A \times \tan 3A}}$ , and we get
$ \Rightarrow \dfrac{1}{{\tan (3A - A)}} = k\cot 2A$
$ \Rightarrow \dfrac{1}{{\tan 2A}} = k\cot 2A$
$ \Rightarrow \cot 2A = k\cot 2A$
Cancelling the similar term and we get
$ \Rightarrow 1 = k$
i.e., $k = 1$
Therefore the value of $k$ is $1$
Option (D) is correct.
Note: We can also solve the given problem by using other properties and formulas of trigonometry. We use the property of trigonometry that is $\tan A = \dfrac{{\sin A}}{{\cos A}}$ and $\cot A = \dfrac{{\cos A}}{{\sin A}}$ and also we use use the formulas of trigonometry , that is $\sin (3A - A) = \sin 3A\cos A - \cos 3A\sin A$ and $\cos (3A - A) = \cos 3A\cos A + \sin 3A\sin A$ .
At first we use the property and we get
\[\dfrac{1}{{\dfrac{{\sin 3A}}{{\cos 3A}} - \dfrac{{\sin A}}{{\cos A}}}} - \dfrac{1}{{\dfrac{{\cos 3A}}{{\sin 3A}} - \dfrac{{\cos A}}{{\sin A}}}} = k\cot 2A\]
Now simply this equation and we get
\[ \Rightarrow \dfrac{1}{{\dfrac{{\sin 3A\cos A - \cos 3A\sin A}}{{\cos 3A \times \cos A}}}} - \dfrac{1}{{\dfrac{{\cos 3A\sin A - \sin 3A\cos A}}{{\sin 3A \times \sin A}}}} = k\cot 2A\]
\[ \Rightarrow \dfrac{{\cos 3A \times \cos A}}{{\sin 3A\cos A - \cos 3A\sin A}} + \dfrac{{\sin 3A \times \sin A}}{{\sin 3A\cos A - \cos 3A\sin A}} = k\cot 2A\]
Now we use the formula of sin of trigonometry and we get
\[ \Rightarrow \dfrac{{\cos 3A \times \cos A}}{{\sin (3A - A)}} + \dfrac{{\sin 3A \times \sin A}}{{\sin (3A - A)}} = k\cot 2A\]
\[ \Rightarrow \dfrac{{\cos 3A \times \cos A}}{{\sin 2A}} + \dfrac{{\sin 3A \times \sin A}}{{\sin 2A}} = k\cot 2A\]
Again we simplify this equation and we get
\[ \Rightarrow \dfrac{{\cos 3A \times \cos A + \sin 3A \times \sin A}}{{\sin 2A}} = k\cot 2A\]
Use the formula of cos of trigonometry and we get
\[ \Rightarrow \dfrac{{\cos (3A - A)}}{{\sin 2A}} = k\cot 2A\]
\[ \Rightarrow \dfrac{{\cos 2A}}{{\sin 2A}} = k\cot 2A\]
$ \Rightarrow \cot 2A = k\cot 2A$
Canceling the similar term and we get
$ \Rightarrow 1 = k$
i.e., $k = 1$
Therefore, Option (D) is correct.
Complete step-by-step solution:
The given function \[\dfrac{1}{{\tan 3A - \tan A}} - \dfrac{1}{{\cot 3A - \cot A}} = k\cot 2A\]
Now we use the properties of trigonometry , that is $\cot A = \dfrac{1}{{\cot A}}$ .
Therefore we have
\[\dfrac{1}{{\tan 3A - \tan A}} - \dfrac{1}{{\dfrac{1}{{\tan 3A}} - \dfrac{1}{{\tan A}}}} = k\cot 2A\]
Simplifying the above equation and we get
$ \Rightarrow \dfrac{1}{{\tan 3A - \tan A}} - \dfrac{1}{{\dfrac{{\tan A - \tan 3A}}{{\tan 3A \times \tan A}}}} = k\cot 2A$
Here we use the property of division $\dfrac{1}{{\dfrac{A}{B}}} = \dfrac{B}{A}$ in the above equation and we get
$ \Rightarrow \dfrac{1}{{\tan 3A - \tan A}} - \dfrac{{\tan 3A \times \tan A}}{{\tan A - \tan 3A}} = k\cot 2A$
We know that $A - B = - (B - A)$
Use this property in above equation and we get
$ \Rightarrow \dfrac{1}{{\tan 3A - \tan A}} + \dfrac{{\tan 3A \times \tan A}}{{\tan 3A - \tan A}} = k\cot 2A$
Now we calculate and simplifying the above equation and we get
$ \Rightarrow \dfrac{{1 - \tan 3A \times \tan A}}{{\tan 3A - \tan A}} = k\cot 2A$
$ \Rightarrow \dfrac{1}{{\dfrac{{\tan 3A - \tan A}}{{1 - \tan 3A \times \tan A}}}} = k\cot 2A$
Now we use the formula of $\tan $ i.e., $\tan (3A - A) = \dfrac{{\tan 3A - \tan A}}{{1 + \tan A \times \tan 3A}}$ , and we get
$ \Rightarrow \dfrac{1}{{\tan (3A - A)}} = k\cot 2A$
$ \Rightarrow \dfrac{1}{{\tan 2A}} = k\cot 2A$
$ \Rightarrow \cot 2A = k\cot 2A$
Cancelling the similar term and we get
$ \Rightarrow 1 = k$
i.e., $k = 1$
Therefore the value of $k$ is $1$
Option (D) is correct.
Note: We can also solve the given problem by using other properties and formulas of trigonometry. We use the property of trigonometry that is $\tan A = \dfrac{{\sin A}}{{\cos A}}$ and $\cot A = \dfrac{{\cos A}}{{\sin A}}$ and also we use use the formulas of trigonometry , that is $\sin (3A - A) = \sin 3A\cos A - \cos 3A\sin A$ and $\cos (3A - A) = \cos 3A\cos A + \sin 3A\sin A$ .
At first we use the property and we get
\[\dfrac{1}{{\dfrac{{\sin 3A}}{{\cos 3A}} - \dfrac{{\sin A}}{{\cos A}}}} - \dfrac{1}{{\dfrac{{\cos 3A}}{{\sin 3A}} - \dfrac{{\cos A}}{{\sin A}}}} = k\cot 2A\]
Now simply this equation and we get
\[ \Rightarrow \dfrac{1}{{\dfrac{{\sin 3A\cos A - \cos 3A\sin A}}{{\cos 3A \times \cos A}}}} - \dfrac{1}{{\dfrac{{\cos 3A\sin A - \sin 3A\cos A}}{{\sin 3A \times \sin A}}}} = k\cot 2A\]
\[ \Rightarrow \dfrac{{\cos 3A \times \cos A}}{{\sin 3A\cos A - \cos 3A\sin A}} + \dfrac{{\sin 3A \times \sin A}}{{\sin 3A\cos A - \cos 3A\sin A}} = k\cot 2A\]
Now we use the formula of sin of trigonometry and we get
\[ \Rightarrow \dfrac{{\cos 3A \times \cos A}}{{\sin (3A - A)}} + \dfrac{{\sin 3A \times \sin A}}{{\sin (3A - A)}} = k\cot 2A\]
\[ \Rightarrow \dfrac{{\cos 3A \times \cos A}}{{\sin 2A}} + \dfrac{{\sin 3A \times \sin A}}{{\sin 2A}} = k\cot 2A\]
Again we simplify this equation and we get
\[ \Rightarrow \dfrac{{\cos 3A \times \cos A + \sin 3A \times \sin A}}{{\sin 2A}} = k\cot 2A\]
Use the formula of cos of trigonometry and we get
\[ \Rightarrow \dfrac{{\cos (3A - A)}}{{\sin 2A}} = k\cot 2A\]
\[ \Rightarrow \dfrac{{\cos 2A}}{{\sin 2A}} = k\cot 2A\]
$ \Rightarrow \cot 2A = k\cot 2A$
Canceling the similar term and we get
$ \Rightarrow 1 = k$
i.e., $k = 1$
Therefore, Option (D) is correct.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

