
If we have a complex number as $z(1 + a) = b + ic$ and ${a^2} + {b^2} + {c^2} = 1$ , then $\dfrac{{(1 + iz)}}{{(1 - iz)}}$ is equal to
$1)\dfrac{{(a + ib)}}{{1 + c}}$
$2)\dfrac{{(b - ic)}}{{1 + a}}$
$3)\dfrac{{(a + ic)}}{{1 + b}}$
$4)$ None of these
Answer
492.6k+ views
Hint: First, complex numbers are the real and imaginary combined numbers as in the form of $z = x + iy$, where x and y are the real numbers and $i$ is the imaginary.
Imaginary $i$ can be also represented into the real values only if, ${i^2} = - 1$
We will use the complex conjugation method to solve the given problem.
Complete step-by-step solution:
Since from the given that we have $z(1 + a) = b + ic$. Let us divide both equations with $1 + a$ to get the value of the z. thus we have $\dfrac{{z(1 + a)}}{{1 + a}} = \dfrac{{b + ic}}{{1 + a}}$
Canceling the common terms, we have $z = \dfrac{{b + ic}}{{1 + a}}$ .
Now we need to find the value of $\dfrac{{(1 + iz)}}{{(1 - iz)}}$ so let us substitute the value of the z which we found, then we get $\dfrac{{(1 + iz)}}{{(1 - iz)}} = \dfrac{{(1 + \dfrac{{i(b + ic)}}{{1 + a}})}}{{(1 - \dfrac{{i(b + ic)}}{{1 + a}})}}$
and we will cross multiply the denominator values then we get $\dfrac{{(1 + iz)}}{{(1 - iz)}} = \dfrac{{(1 + \dfrac{{i(b + ic)}}{{1 + a}})}}{{(1 - \dfrac{{i(b + ic)}}{{1 + a}})}} = \dfrac{{\dfrac{{1 + a + i(b + ic)}}{{1 + a}}}}{{\dfrac{{1 + a - i(b + ic)}}{{1 + a}}}}$
now we will cancel the common terms, then we have $\dfrac{{\dfrac{{1 + a + i(b + ic)}}{{1 + a}}}}{{\dfrac{{1 + a - i(b + ic)}}{{1 + a}}}} = \dfrac{{1 + a + i(b + ic)}}{{1 + a - i(b + ic)}}$
further solving we have $\dfrac{{1 + a + i(b + ic)}}{{1 + a - i(b + ic)}} = \dfrac{{1 + a + ib + {i^2}c}}{{1 + a - ib - {i^2}c}}$ since we know that ${i^2} = - 1$
hence, we get $\dfrac{{1 + a + ib + {i^2}c}}{{1 + a - ib - {i^2}c}} = \dfrac{{1 + a - c + ib}}{{1 + a + c - ib}}$
Now we will use the method of conjugation, which is to multiply with the original denominator of the opposite sign imaginary value to the numerator and denominator values.
Thus, we have $\dfrac{{1 + a - c + ib}}{{1 + a + c - ib}} \times \dfrac{{1 + a + c + ib}}{{1 + a + c + ib}}$
Since $(a - ib)(a + ib) = {a^2} + {b^2}$ then we have $\dfrac{{1 + a - c + ib}}{{1 + a + c - ib}} \times \dfrac{{1 + a + c + ib}}{{1 + a + c + ib}} = \dfrac{{(1 + a - c + ib)(1 + a + c + ib)}}{{{{(1 + a + c)}^2} + {b^2}}}$
Further solving with the general multiplication, we have $\dfrac{{(1 + a - c + ib)(1 + a + c + ib)}}{{{{(1 + a + c)}^2} + {b^2}}} = \dfrac{{1 + 2a + {a^2} + {b^2} + {c^2} + 2ib + 2iab}}{{1 + {a^2} + {b^2} + {c^2} + 2ac + 2(a + c)}}$
Since from the given we have ${a^2} + {b^2} + {c^2} = 1$ and thus we get $\dfrac{{1 + 2a + {a^2} + {b^2} + {c^2} + 2ib + 2iab}}{{1 + {a^2} + {b^2} + {c^2} + 2ac + 2(a + c)}} = \dfrac{{2(a + {a^2} + ib + iab)}}{{2(1 + ac + (a + c))}}$
Canceling the common terms, we have $\dfrac{{(a + {a^2} + ib + iab)}}{{(1 + ac + (a + c))}} = \dfrac{{a(a + 1) + ib(a + 1)}}{{(a + 1)(c + 1)}}$
Finally, we have \[\dfrac{{a(a + 1) + ib(a + 1)}}{{(a + 1)(c + 1)}} = \dfrac{{a + ib}}{{c + 1}}\]
Therefore, the option $1)\dfrac{{(a + ib)}}{{1 + c}}$ is correct.
Note: The conjugate of a complex number represents the reflection of that complex number about the real axis on the argand plane.
When the imaginary $i$ of the complex number is replaced with $ - i$ , we get the conjugate of that complex number that shows the image of the particular complex number about the plane.
Hence, we used the conjugation of $1 + a + c - ib$ is $1 + a + c + ib$
Imaginary $i$ can be also represented into the real values only if, ${i^2} = - 1$
We will use the complex conjugation method to solve the given problem.
Complete step-by-step solution:
Since from the given that we have $z(1 + a) = b + ic$. Let us divide both equations with $1 + a$ to get the value of the z. thus we have $\dfrac{{z(1 + a)}}{{1 + a}} = \dfrac{{b + ic}}{{1 + a}}$
Canceling the common terms, we have $z = \dfrac{{b + ic}}{{1 + a}}$ .
Now we need to find the value of $\dfrac{{(1 + iz)}}{{(1 - iz)}}$ so let us substitute the value of the z which we found, then we get $\dfrac{{(1 + iz)}}{{(1 - iz)}} = \dfrac{{(1 + \dfrac{{i(b + ic)}}{{1 + a}})}}{{(1 - \dfrac{{i(b + ic)}}{{1 + a}})}}$
and we will cross multiply the denominator values then we get $\dfrac{{(1 + iz)}}{{(1 - iz)}} = \dfrac{{(1 + \dfrac{{i(b + ic)}}{{1 + a}})}}{{(1 - \dfrac{{i(b + ic)}}{{1 + a}})}} = \dfrac{{\dfrac{{1 + a + i(b + ic)}}{{1 + a}}}}{{\dfrac{{1 + a - i(b + ic)}}{{1 + a}}}}$
now we will cancel the common terms, then we have $\dfrac{{\dfrac{{1 + a + i(b + ic)}}{{1 + a}}}}{{\dfrac{{1 + a - i(b + ic)}}{{1 + a}}}} = \dfrac{{1 + a + i(b + ic)}}{{1 + a - i(b + ic)}}$
further solving we have $\dfrac{{1 + a + i(b + ic)}}{{1 + a - i(b + ic)}} = \dfrac{{1 + a + ib + {i^2}c}}{{1 + a - ib - {i^2}c}}$ since we know that ${i^2} = - 1$
hence, we get $\dfrac{{1 + a + ib + {i^2}c}}{{1 + a - ib - {i^2}c}} = \dfrac{{1 + a - c + ib}}{{1 + a + c - ib}}$
Now we will use the method of conjugation, which is to multiply with the original denominator of the opposite sign imaginary value to the numerator and denominator values.
Thus, we have $\dfrac{{1 + a - c + ib}}{{1 + a + c - ib}} \times \dfrac{{1 + a + c + ib}}{{1 + a + c + ib}}$
Since $(a - ib)(a + ib) = {a^2} + {b^2}$ then we have $\dfrac{{1 + a - c + ib}}{{1 + a + c - ib}} \times \dfrac{{1 + a + c + ib}}{{1 + a + c + ib}} = \dfrac{{(1 + a - c + ib)(1 + a + c + ib)}}{{{{(1 + a + c)}^2} + {b^2}}}$
Further solving with the general multiplication, we have $\dfrac{{(1 + a - c + ib)(1 + a + c + ib)}}{{{{(1 + a + c)}^2} + {b^2}}} = \dfrac{{1 + 2a + {a^2} + {b^2} + {c^2} + 2ib + 2iab}}{{1 + {a^2} + {b^2} + {c^2} + 2ac + 2(a + c)}}$
Since from the given we have ${a^2} + {b^2} + {c^2} = 1$ and thus we get $\dfrac{{1 + 2a + {a^2} + {b^2} + {c^2} + 2ib + 2iab}}{{1 + {a^2} + {b^2} + {c^2} + 2ac + 2(a + c)}} = \dfrac{{2(a + {a^2} + ib + iab)}}{{2(1 + ac + (a + c))}}$
Canceling the common terms, we have $\dfrac{{(a + {a^2} + ib + iab)}}{{(1 + ac + (a + c))}} = \dfrac{{a(a + 1) + ib(a + 1)}}{{(a + 1)(c + 1)}}$
Finally, we have \[\dfrac{{a(a + 1) + ib(a + 1)}}{{(a + 1)(c + 1)}} = \dfrac{{a + ib}}{{c + 1}}\]
Therefore, the option $1)\dfrac{{(a + ib)}}{{1 + c}}$ is correct.
Note: The conjugate of a complex number represents the reflection of that complex number about the real axis on the argand plane.
When the imaginary $i$ of the complex number is replaced with $ - i$ , we get the conjugate of that complex number that shows the image of the particular complex number about the plane.
Hence, we used the conjugation of $1 + a + c - ib$ is $1 + a + c + ib$
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

