
If uncertainty in position and momentum are equal then uncertainty in velocity is:
A.
B.
C.
D.
Answer
493.5k+ views
2 likes
Hint: Heisenberg’s uncertainty principle states that the position and momentum of a particle cannot be determined simultaneously with precision. Mathematically, it is expressed as . Here, is the uncertainty in position and is the uncertainty in momentum.
Complete step by step solution:
We know that the Heisenberg’s uncertainty principle is mathematically expressed as,
or
where is the uncertainty in position,
is the uncertainty in momentum,
is the Planck’s constant.
We are given that the uncertainty in position and momentum are equal. Thus,
We know that the momentum of a particle is the product of the mass of the particle and the velocity with which the particle is moving. Thus,
where is the uncertainty in momentum,
is the mass of the particle,
is the velocity of the particle.
Thus, the mathematical expression for Heisenberg’s uncertainty principle is,
We are given that the uncertainty in position and momentum are equal. Thus,
Thus, the mathematical expression for Heisenberg’s uncertainty principle is,
Take the square root on both sides of the equation. Thus,
Thus, the uncertainty in velocity is .
Thus, if uncertainty in position and momentum are equal then uncertainty in velocity is .
Thus, the correct option is (C) .
Note:
Heisenberg’s uncertainty principle is not applicable to the macroscopic particles but it is applicable only to the microscopic particles i.e. the uncertainty in position and the uncertainty in momentum must be along the same axis. We can say that if the momentum is parallel to an axis is precisely known then the position along the same axis is uncertain or vice versa.
Complete step by step solution:
We know that the Heisenberg’s uncertainty principle is mathematically expressed as,
where
We are given that the uncertainty in position and momentum are equal. Thus,
We know that the momentum of a particle is the product of the mass of the particle and the velocity with which the particle is moving. Thus,
where
Thus, the mathematical expression for Heisenberg’s uncertainty principle is,
We are given that the uncertainty in position and momentum are equal. Thus,
Thus, the mathematical expression for Heisenberg’s uncertainty principle is,
Take the square root on both sides of the equation. Thus,
Thus, the uncertainty in velocity is
Thus, if uncertainty in position and momentum are equal then uncertainty in velocity is
Thus, the correct option is (C)
Note:
Heisenberg’s uncertainty principle is not applicable to the macroscopic particles but it is applicable only to the microscopic particles i.e. the uncertainty in position and the uncertainty in momentum must be along the same axis. We can say that if the momentum is parallel to an axis is precisely known then the position along the same axis is uncertain or vice versa.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
