Answer

Verified

418.2k+ views

**Hint:**In this question, we need to prove the formula of finding the derivative of the product of three functions using two methods. For repeated application of product rule, we will first consider two terms as one and apply product rule on obtained two terms. After that, we will apply product rule on that term having two terms. Product rule on any two function f(x) and g(x) is given by $\dfrac{d}{dx}f\left( x \right)\cdot g\left( x \right)=f\left( x \right)g'\left( x \right)+f'\left( x \right)g\left( x \right)$ where f'(x) and g'(x) denotes derivatives of f(x) and g(x) respectively. For logarithmic differentiation, we will consider the product as y and then take log both sides. After that, we will apply $\log \left( m\cdot n \right)=\log m+\log n$ to separate three terms and hence find differentiation of logarithmic terms. Derivatives of any logarithmic function is given by, $\dfrac{d}{dx}\log y=\dfrac{1}{y}\dfrac{dy}{dx}$.

**Complete step-by-step answer:**

Let us first find the derivative of the product of three function u, v and w using repeated application of product rule.

Let us suppose function as y. So, we get: $y=u\cdot v\cdot w$.

Taking differentiation both sides w.r.t. x, we get: $\dfrac{dy}{dx}=\dfrac{d}{dx}\left( u\cdot v\cdot w \right)$.

Let us consider uv as one term and then apply product rule on uv and w. Product rule on any two functions f(x) and g(x) is given by, $\dfrac{d}{dx}f\left( x \right)\cdot g\left( x \right)=f\left( x \right)\cdot \dfrac{d}{dx}g\left( x \right)+g\left( x \right)\cdot \dfrac{d}{dx}f\left( x \right)$.

Hence we get: $\dfrac{dy}{dx}=\dfrac{d\left( uv \right)}{dx}\cdot w+\dfrac{dw}{dx}\cdot \left( uv \right)$.

Now, we need to find derivative of uv. Using product rule $\dfrac{d}{dx}\left( uv \right)=\dfrac{udv}{dx}+\dfrac{vdu}{dx}$ we get:

\[\begin{align}

& \dfrac{dy}{dx}=\left( u\dfrac{dv}{dx}+v\dfrac{du}{dx} \right)w+\dfrac{dw}{dx}\left( uv \right) \\

& \Rightarrow \dfrac{dy}{dx}=uw\dfrac{dv}{dx}+vw\dfrac{du}{dx}+uv\dfrac{dw}{dx} \\

\end{align}\]

Now y was supposed to be u.v.w, so we get:

\[\Rightarrow \dfrac{d}{dx}\left( u\cdot v\cdot w \right)=uw\dfrac{dv}{dx}+vw\dfrac{du}{dx}+uv\dfrac{dw}{dx}\]

Rearranging the terms, we get:

\[\Rightarrow \dfrac{d}{dx}\left( u\cdot v\cdot w \right)=\dfrac{du}{dx}\cdot v\cdot w+u\cdot \dfrac{dv}{dx}\cdot w+u\cdot v\cdot \dfrac{dw}{dx}\]

Hence proved.

Now, let us prove it using logarithmic differentiation.

We know, $y=u\cdot v\cdot w$.

Taking log on both sides, we get: $\log y=\log \left( uvw \right)$.

We know that $\log \left( ab \right)=\log a+\log b$ hence, we get: $\log y=\log u+\log v+\log w$.

Differentiating both sides w.r.t. x, we get:

\[\begin{align}

& \dfrac{d}{dx}\left( \log y \right)=\dfrac{d}{dx}\left( \log u+\log v+\log w \right) \\

& \Rightarrow \dfrac{d}{dx}\left( \log y \right)=\dfrac{d}{dx}\log u+\dfrac{d}{dx}\log v+\dfrac{d}{dx}\log w \\

\end{align}\]

As we know that, differentiation of logarithmic function is given by $\dfrac{d}{dx}\log p=\dfrac{1}{p}\dfrac{dp}{dx}$.

Hence applying this we get:

\[\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{1}{u}\dfrac{du}{dx}+\dfrac{1}{v}\dfrac{dv}{dx}+\dfrac{1}{w}\dfrac{dw}{dx}\]

Taking y on the right side we get:

\[\Rightarrow \dfrac{dy}{dx}=y\left( \dfrac{1}{u}\dfrac{du}{dx}+\dfrac{1}{v}\dfrac{dv}{dx}+\dfrac{1}{w}\dfrac{dw}{dx} \right)\]

As we know, y = uvw so putting value, we get:

\[\begin{align}

& \Rightarrow \dfrac{d\left( u\cdot v\cdot w \right)}{dx}=\left( uvw \right)\left( \dfrac{1}{u}\dfrac{du}{dx}+\dfrac{1}{v}\dfrac{dv}{dx}+\dfrac{1}{w}\dfrac{dw}{dx} \right) \\

& \Rightarrow \dfrac{d\left( u\cdot v\cdot w \right)}{dx}=\dfrac{uvw}{u}\dfrac{du}{dx}+\dfrac{uvw}{v}\dfrac{dv}{dx}+\dfrac{uvw}{w}\dfrac{dw}{dx} \\

& \Rightarrow \dfrac{d\left( u\cdot v\cdot w \right)}{dx}=vw\dfrac{du}{dx}+uw\dfrac{dv}{dx}+uv\dfrac{dw}{dx} \\

\end{align}\]

Rearranging we get:

\[\Rightarrow \dfrac{d}{dx}\left( u\cdot v\cdot w \right)=\dfrac{du}{dx}\cdot v\cdot w+u\cdot \dfrac{dv}{dx}\cdot w+u\cdot v\cdot \dfrac{dw}{dx}\]

Hence proved.

**Note:**Students should take care while applying repeating product rule. They can consider any two terms as one term first and then solve. Take care while applying logarithmic function on both sides and separating terms. Students can forget to put $\dfrac{1}{y}$ on left side of the equation. Always remember that, in the product rule, we use positive sign only. In quotient rule, we use negative sign.

Recently Updated Pages

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Advantages and disadvantages of science

Trending doubts

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Difference Between Plant Cell and Animal Cell

10 examples of evaporation in daily life with explanations

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

How do you graph the function fx 4x class 9 maths CBSE