
If trigonometric identiites $\csc \theta -\sin \theta ={{b}^{3}}$ and $\sec \theta -\cos \theta ={{a}^{3}}$ then prove that ${{a}^{2}}{{b}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right)=1$ .
Answer
613.5k+ views
Hint: For solving this question first we will simplify the value of $a$ and $b$ to find their values. We will use one of the very basic trigonometric identities and that is ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ . Moreover, we will perform some simple algebraic operations and prove the desired result.
Complete step-by-step solution -
Given:
It is given that if $\csc \theta -\sin \theta ={{b}^{3}}$ and $\sec \theta -\cos \theta ={{a}^{3}}$ . We have to prove that ${{a}^{2}}{{b}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right)=1$ .
Now, before we proceed we should know the following equations:
$\begin{align}
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\
& \Rightarrow 1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta ......................\left( 1 \right) \\
& \Rightarrow 1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta ......................\left( 2 \right) \\
& \dfrac{1}{\sin \theta }=\csc \theta ...................................\left( 3 \right) \\
& \dfrac{1}{\cos \theta }=\sec \theta ..................................\left( 4 \right) \\
\end{align}$
Now, we will use the formulas in the above equations to simplify the value of $a$ , $b$ and then we will prove the desired result.
Simplification of $b$ :
Now, we have $\csc \theta -\sin \theta ={{b}^{3}}$ so, using the formula from the equation (3). Then,
$\begin{align}
& \csc \theta -\sin \theta ={{b}^{3}} \\
& \Rightarrow \dfrac{1}{\sin \theta }-\sin \theta ={{b}^{3}} \\
& \Rightarrow {{b}^{3}}=\dfrac{1}{\sin \theta }-\sin \theta \\
& \Rightarrow {{b}^{3}}=\dfrac{1-{{\sin }^{2}}\theta }{\sin \theta } \\
\end{align}$
Now, using the formula form equation (2) in the above equation. Then,
${{b}^{3}}=\dfrac{1-{{\sin }^{2}}\theta }{\sin \theta }$
$\begin{align}
& \Rightarrow {{b}^{3}}=\dfrac{{{\cos }^{2}}\theta }{\sin \theta } \\
& \Rightarrow b=\dfrac{{{\cos }^{{}^{2}/{}_{3}}}\theta }{{{\sin }^{{}^{1}/{}_{3}}}\theta }........................\left( 5 \right) \\
\end{align}$
Simplification of $a$ :
Now, we have $\sec \theta -\cos \theta ={{a}^{3}}$ so, using the formula from the equation (4). Then,
$\begin{align}
& \sec \theta -\cos \theta ={{a}^{3}} \\
& \Rightarrow \dfrac{1}{\cos \theta }-\cos \theta ={{a}^{3}} \\
& \Rightarrow \dfrac{1-{{\cos }^{2}}\theta }{\cos \theta }={{a}^{3}} \\
& \Rightarrow {{a}^{3}}=\dfrac{1-{{\cos }^{2}}\theta }{\cos \theta } \\
\end{align}$
Now, using the formula form equation (1) in the above equation. Then,
$\begin{align}
& {{a}^{3}}=\dfrac{1-{{\cos }^{2}}\theta }{\cos \theta } \\
& \Rightarrow {{a}^{3}}=\dfrac{{{\sin }^{2}}\theta }{\cos \theta } \\
& \Rightarrow a=\dfrac{{{\sin }^{{}^{2}/{}_{3}}}\theta }{{{\cos }^{{}^{1}/{}_{3}}}\theta }..............................\left( 5 \right) \\
\end{align}$
Now, from the equation (4) and equation (5) substituting the value of $a$ and $b$ in the expression ${{a}^{2}}{{b}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right)$ . Then,
\[\begin{align}
& {{a}^{2}}{{b}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right) \\
& \Rightarrow {{\left( \dfrac{{{\sin }^{{}^{2}/{}_{3}}}\theta }{{{\cos }^{{}^{1}/{}_{3}}}\theta }\times \dfrac{{{\cos }^{{}^{2}/{}_{3}}}\theta }{{{\sin }^{{}^{1}/{}_{3}}}\theta } \right)}^{2}}\times \left( {{\left( \dfrac{{{\sin }^{{}^{2}/{}_{3}}}\theta }{{{\cos }^{{}^{1}/{}_{3}}}\theta } \right)}^{2}}+{{\left( \dfrac{{{\cos }^{{}^{2}/{}_{3}}}\theta }{{{\sin }^{{}^{1}/{}_{3}}}\theta } \right)}^{2}} \right) \\
& \Rightarrow {{\left( {{\sin }^{{}^{1}/{}_{3}}}\theta {{\cos }^{{}^{1}/{}_{3}}}\theta \right)}^{2}}\times \left( \dfrac{{{\sin }^{{}^{4}/{}_{3}}}\theta }{{{\cos }^{{}^{2}/{}_{3}}}\theta }+\dfrac{{{\cos }^{{}^{4}/{}_{3}}}\theta }{{{\sin }^{{}^{2}/{}_{3}}}\theta } \right) \\
& \Rightarrow {{\sin }^{{}^{2}/{}_{3}}}\theta {{\cos }^{{}^{2}/{}_{3}}}\theta \times \left( \dfrac{{{\sin }^{{}^{6}/{}_{3}}}\theta +{{\cos }^{{}^{6}/{}_{3}}}\theta }{{{\sin }^{{}^{2}/{}_{3}}}\theta {{\cos }^{{}^{2}/{}_{3}}}\theta } \right) \\
& \Rightarrow {{\sin }^{{}^{2}/{}_{3}}}\theta {{\cos }^{{}^{2}/{}_{3}}}\theta \times \left( \dfrac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }{{{\sin }^{{}^{2}/{}_{3}}}\theta {{\cos }^{{}^{2}/{}_{3}}}\theta } \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow {{\sin }^{{}^{2}/{}_{3}}}\theta {{\cos }^{{}^{2}/{}_{3}}}\theta \times \dfrac{1}{{{\sin }^{{}^{2}/{}_{3}}}\theta {{\cos }^{{}^{2}/{}_{3}}}\theta } \\
& \Rightarrow 1 \\
\end{align}\]
Now, from the above result, we can say that the value of ${{a}^{2}}{{b}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right)$ is equal to 1.
Thus, ${{a}^{2}}{{b}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right)=1$ .
Hence, proved.
Note: Here, the student should first understand what we have to prove in the question and try to apply the perfect formula. Moreover, the student should proceed in a stepwise manner and while solving first find the value of $a$ and $b$ separately and then prove the result comfortably.
Complete step-by-step solution -
Given:
It is given that if $\csc \theta -\sin \theta ={{b}^{3}}$ and $\sec \theta -\cos \theta ={{a}^{3}}$ . We have to prove that ${{a}^{2}}{{b}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right)=1$ .
Now, before we proceed we should know the following equations:
$\begin{align}
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\
& \Rightarrow 1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta ......................\left( 1 \right) \\
& \Rightarrow 1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta ......................\left( 2 \right) \\
& \dfrac{1}{\sin \theta }=\csc \theta ...................................\left( 3 \right) \\
& \dfrac{1}{\cos \theta }=\sec \theta ..................................\left( 4 \right) \\
\end{align}$
Now, we will use the formulas in the above equations to simplify the value of $a$ , $b$ and then we will prove the desired result.
Simplification of $b$ :
Now, we have $\csc \theta -\sin \theta ={{b}^{3}}$ so, using the formula from the equation (3). Then,
$\begin{align}
& \csc \theta -\sin \theta ={{b}^{3}} \\
& \Rightarrow \dfrac{1}{\sin \theta }-\sin \theta ={{b}^{3}} \\
& \Rightarrow {{b}^{3}}=\dfrac{1}{\sin \theta }-\sin \theta \\
& \Rightarrow {{b}^{3}}=\dfrac{1-{{\sin }^{2}}\theta }{\sin \theta } \\
\end{align}$
Now, using the formula form equation (2) in the above equation. Then,
${{b}^{3}}=\dfrac{1-{{\sin }^{2}}\theta }{\sin \theta }$
$\begin{align}
& \Rightarrow {{b}^{3}}=\dfrac{{{\cos }^{2}}\theta }{\sin \theta } \\
& \Rightarrow b=\dfrac{{{\cos }^{{}^{2}/{}_{3}}}\theta }{{{\sin }^{{}^{1}/{}_{3}}}\theta }........................\left( 5 \right) \\
\end{align}$
Simplification of $a$ :
Now, we have $\sec \theta -\cos \theta ={{a}^{3}}$ so, using the formula from the equation (4). Then,
$\begin{align}
& \sec \theta -\cos \theta ={{a}^{3}} \\
& \Rightarrow \dfrac{1}{\cos \theta }-\cos \theta ={{a}^{3}} \\
& \Rightarrow \dfrac{1-{{\cos }^{2}}\theta }{\cos \theta }={{a}^{3}} \\
& \Rightarrow {{a}^{3}}=\dfrac{1-{{\cos }^{2}}\theta }{\cos \theta } \\
\end{align}$
Now, using the formula form equation (1) in the above equation. Then,
$\begin{align}
& {{a}^{3}}=\dfrac{1-{{\cos }^{2}}\theta }{\cos \theta } \\
& \Rightarrow {{a}^{3}}=\dfrac{{{\sin }^{2}}\theta }{\cos \theta } \\
& \Rightarrow a=\dfrac{{{\sin }^{{}^{2}/{}_{3}}}\theta }{{{\cos }^{{}^{1}/{}_{3}}}\theta }..............................\left( 5 \right) \\
\end{align}$
Now, from the equation (4) and equation (5) substituting the value of $a$ and $b$ in the expression ${{a}^{2}}{{b}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right)$ . Then,
\[\begin{align}
& {{a}^{2}}{{b}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right) \\
& \Rightarrow {{\left( \dfrac{{{\sin }^{{}^{2}/{}_{3}}}\theta }{{{\cos }^{{}^{1}/{}_{3}}}\theta }\times \dfrac{{{\cos }^{{}^{2}/{}_{3}}}\theta }{{{\sin }^{{}^{1}/{}_{3}}}\theta } \right)}^{2}}\times \left( {{\left( \dfrac{{{\sin }^{{}^{2}/{}_{3}}}\theta }{{{\cos }^{{}^{1}/{}_{3}}}\theta } \right)}^{2}}+{{\left( \dfrac{{{\cos }^{{}^{2}/{}_{3}}}\theta }{{{\sin }^{{}^{1}/{}_{3}}}\theta } \right)}^{2}} \right) \\
& \Rightarrow {{\left( {{\sin }^{{}^{1}/{}_{3}}}\theta {{\cos }^{{}^{1}/{}_{3}}}\theta \right)}^{2}}\times \left( \dfrac{{{\sin }^{{}^{4}/{}_{3}}}\theta }{{{\cos }^{{}^{2}/{}_{3}}}\theta }+\dfrac{{{\cos }^{{}^{4}/{}_{3}}}\theta }{{{\sin }^{{}^{2}/{}_{3}}}\theta } \right) \\
& \Rightarrow {{\sin }^{{}^{2}/{}_{3}}}\theta {{\cos }^{{}^{2}/{}_{3}}}\theta \times \left( \dfrac{{{\sin }^{{}^{6}/{}_{3}}}\theta +{{\cos }^{{}^{6}/{}_{3}}}\theta }{{{\sin }^{{}^{2}/{}_{3}}}\theta {{\cos }^{{}^{2}/{}_{3}}}\theta } \right) \\
& \Rightarrow {{\sin }^{{}^{2}/{}_{3}}}\theta {{\cos }^{{}^{2}/{}_{3}}}\theta \times \left( \dfrac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }{{{\sin }^{{}^{2}/{}_{3}}}\theta {{\cos }^{{}^{2}/{}_{3}}}\theta } \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow {{\sin }^{{}^{2}/{}_{3}}}\theta {{\cos }^{{}^{2}/{}_{3}}}\theta \times \dfrac{1}{{{\sin }^{{}^{2}/{}_{3}}}\theta {{\cos }^{{}^{2}/{}_{3}}}\theta } \\
& \Rightarrow 1 \\
\end{align}\]
Now, from the above result, we can say that the value of ${{a}^{2}}{{b}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right)$ is equal to 1.
Thus, ${{a}^{2}}{{b}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right)=1$ .
Hence, proved.
Note: Here, the student should first understand what we have to prove in the question and try to apply the perfect formula. Moreover, the student should proceed in a stepwise manner and while solving first find the value of $a$ and $b$ separately and then prove the result comfortably.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

