
If ${T_n} = {\sin ^n}x + {\cos ^n}x$, prove that $\dfrac{{{T_3} - {T_5}}}{{{T_1}}} = \dfrac{{{T_5} - {T_7}}}{{{T_3}}}$ .
Answer
495k+ views
Hint: In this problem, first we will find L.H.S. part $\dfrac{{{T_3} - {T_5}}}{{{T_1}}}$ by putting $n = 1,3,5$ in ${T_n} = {\sin ^n}x + {\cos ^n}x$. Then, we will find R.H.S. part $\dfrac{{{T_5} - {T_7}}}{{{T_3}}}$ by putting $n = 3,5,7$ in ${T_n} = {\sin ^n}x + {\cos ^n}x$. Also we will use the identity ${\sin ^2}\theta + {\cos ^2}\theta = 1$.
Complete step by step solution: In this problem, it is given that ${T_n} = {\sin ^n}x + {\cos ^n}x\; \cdots \cdots \left( 1 \right)$.
Let us find ${T_1}$ by putting $n = 1$ in equation $\left( 1 \right)$. Therefore, we get ${T_1} = {\sin ^1}x + {\cos ^1}x = \sin x + \cos x\; \cdots \cdots \left( 2 \right)$
Let us find ${T_3}$ by putting $n = 3$ in equation $\left( 1 \right)$. Therefore, we get ${T_3} = {\sin ^3}x + {\cos ^3}x\; \cdots \cdots \left( 3 \right)$
Let us find ${T_5}$ by putting $n = 5$ in equation $\left( 1 \right)$. Therefore, we get ${T_5} = {\sin ^5}x + {\cos ^5}x\; \cdots \cdots \left( 4 \right)$
Now we are going to find L.H.S. part $\dfrac{{{T_3} - {T_5}}}{{{T_1}}}$ by using equations $\left( 2 \right),\left( 3 \right)$ and $\left( 4 \right)$.
L.H.S. $ = \dfrac{{{T_3} - {T_5}}}{{{T_1}}}$
$ = \dfrac{{\left( {{{\sin }^3}x + {{\cos }^3}x} \right) - \left( {{{\sin }^5}x + {{\cos }^5}x} \right)}}{{\sin x + \cos x}}$
$ = \dfrac{{{{\sin }^3}x + {{\cos }^3}x - {{\sin }^5}x - {{\cos }^5}x}}{{\sin x + \cos x}}$
Rewrite the above equation, we get
$ = \dfrac{{{{\sin }^3}x - {{\sin }^5}x + {{\cos }^3}x - {{\cos }^5}x}}{{\sin x + \cos x}}$
$ = \dfrac{{{{\sin }^3}x\left( {1 - {{\sin }^2}x} \right) + {{\cos }^3}x\left( {1 - {{\cos }^2}x} \right)}}{{\sin x + \cos x}}$
Now we are going to use Pythagorean identity ${\sin ^2}x + {\cos ^2}x = 1$. Note that ${\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x$ or ${\cos ^2}x = 1 - {\sin ^2}x$.
$ \Rightarrow $ L.H.S. $ = \dfrac{{{{\sin }^3}x\left( {{{\cos }^2}x} \right) + {{\cos }^3}x\left( {{{\sin }^2}x} \right)}}{{\sin x + \cos x}}$
Taking ${\sin ^2}x \cdot {\cos ^2}x$ common out from the numerator, we get
L.H.S. $ = \dfrac{{{{\sin }^2}x \cdot {{\cos }^2}x\left( {\sin x + \cos x} \right)}}{{\sin x + \cos x}}$
On cancellation of the factor $\sin x + \cos x$, we get
L.H.S. $ = {\sin ^2}x \cdot {\cos ^2}x$
Therefore, we get $\dfrac{{{T_3} - {T_5}}}{{{T_1}}} = {\sin ^2}x \cdot {\cos ^2}x$.
Let us find ${T_7}$ by putting $n = 7$ in equation $\left( 1 \right)$. Therefore, we get ${T_7} = {\sin ^7}x + {\cos ^7}x\; \cdots \cdots \left( 5 \right)$.
Now we are going to find R.H.S. part $\dfrac{{{T_5} - {T_7}}}{{{T_3}}}$ by using equations $\left( 3 \right),\left( 4 \right)$ and $\left( 5 \right)$.
R.H.S. $ = \dfrac{{{T_5} - {T_7}}}{{{T_3}}}$
$ = \dfrac{{\left( {{{\sin }^5}x + {{\cos }^5}x} \right) - \left( {{{\sin }^7}x + {{\cos }^7}x} \right)}}{{{{\sin }^3}x + {{\cos }^3}x}}$
$ = \dfrac{{{{\sin }^5}x + {{\cos }^5}x - {{\sin }^7}x - {{\cos }^7}x}}{{{{\sin }^3}x + {{\cos }^3}x}}$
Rewrite the above equation, we get
$ = \dfrac{{{{\sin }^5}x - {{\sin }^7}x + {{\cos }^5}x - {{\cos }^7}x}}{{{{\sin }^3}x + {{\cos }^3}x}}$
$ = \dfrac{{{{\sin }^5}x\left( {1 - {{\sin }^2}x} \right) + {{\cos }^5}x\left( {1 - {{\cos }^2}x} \right)}}{{{{\sin }^3}x + {{\cos }^3}x}}$
Now we are going to use Pythagorean identity ${\sin ^2}x + {\cos ^2}x = 1$. Note that ${\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x$ or ${\cos ^2}x = 1 - {\sin ^2}x$.
$ \Rightarrow $ R.H.S. $ = \dfrac{{{{\sin }^5}x\left( {{{\cos }^2}x} \right) + {{\cos }^5}x\left( {{{\sin }^2}x} \right)}}{{{{\sin }^3}x + {{\cos }^3}x}}$
Taking ${\sin ^2}x \cdot {\cos ^2}x$ common out from the numerator, we get
R.H.S. $ = \dfrac{{{{\sin }^2}x \cdot {{\cos }^2}x\left( {{{\sin }^3}x + {{\cos }^3}x} \right)}}{{{{\sin }^3}x + {{\cos }^3}x}}$
On cancellation of the factor ${\sin ^3}x + {\cos ^3}x$, we get
R.H.S. $ = {\sin ^2}x \cdot {\cos ^2}x$
Therefore, we get $\dfrac{{{T_5} - {T_7}}}{{{T_3}}} = {\sin ^2}x \cdot {\cos ^2}x$.
Therefore, we can say that $\dfrac{{{T_3} - {T_5}}}{{{T_1}}} = \dfrac{{{T_5} - {T_7}}}{{{T_3}}}$.
Note: There are various distinct trigonometric identities. When trigonometric functions are involved in an equation then trigonometric identities are useful to solve that equation. We can use identities $\cos e{c^2}x - {\cot ^2}x = 1$ and ${\sec ^2}x - {\tan ^2}x = 1$ to solve many trigonometric problems. These identities are called Pythagorean identities.
Complete step by step solution: In this problem, it is given that ${T_n} = {\sin ^n}x + {\cos ^n}x\; \cdots \cdots \left( 1 \right)$.
Let us find ${T_1}$ by putting $n = 1$ in equation $\left( 1 \right)$. Therefore, we get ${T_1} = {\sin ^1}x + {\cos ^1}x = \sin x + \cos x\; \cdots \cdots \left( 2 \right)$
Let us find ${T_3}$ by putting $n = 3$ in equation $\left( 1 \right)$. Therefore, we get ${T_3} = {\sin ^3}x + {\cos ^3}x\; \cdots \cdots \left( 3 \right)$
Let us find ${T_5}$ by putting $n = 5$ in equation $\left( 1 \right)$. Therefore, we get ${T_5} = {\sin ^5}x + {\cos ^5}x\; \cdots \cdots \left( 4 \right)$
Now we are going to find L.H.S. part $\dfrac{{{T_3} - {T_5}}}{{{T_1}}}$ by using equations $\left( 2 \right),\left( 3 \right)$ and $\left( 4 \right)$.
L.H.S. $ = \dfrac{{{T_3} - {T_5}}}{{{T_1}}}$
$ = \dfrac{{\left( {{{\sin }^3}x + {{\cos }^3}x} \right) - \left( {{{\sin }^5}x + {{\cos }^5}x} \right)}}{{\sin x + \cos x}}$
$ = \dfrac{{{{\sin }^3}x + {{\cos }^3}x - {{\sin }^5}x - {{\cos }^5}x}}{{\sin x + \cos x}}$
Rewrite the above equation, we get
$ = \dfrac{{{{\sin }^3}x - {{\sin }^5}x + {{\cos }^3}x - {{\cos }^5}x}}{{\sin x + \cos x}}$
$ = \dfrac{{{{\sin }^3}x\left( {1 - {{\sin }^2}x} \right) + {{\cos }^3}x\left( {1 - {{\cos }^2}x} \right)}}{{\sin x + \cos x}}$
Now we are going to use Pythagorean identity ${\sin ^2}x + {\cos ^2}x = 1$. Note that ${\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x$ or ${\cos ^2}x = 1 - {\sin ^2}x$.
$ \Rightarrow $ L.H.S. $ = \dfrac{{{{\sin }^3}x\left( {{{\cos }^2}x} \right) + {{\cos }^3}x\left( {{{\sin }^2}x} \right)}}{{\sin x + \cos x}}$
Taking ${\sin ^2}x \cdot {\cos ^2}x$ common out from the numerator, we get
L.H.S. $ = \dfrac{{{{\sin }^2}x \cdot {{\cos }^2}x\left( {\sin x + \cos x} \right)}}{{\sin x + \cos x}}$
On cancellation of the factor $\sin x + \cos x$, we get
L.H.S. $ = {\sin ^2}x \cdot {\cos ^2}x$
Therefore, we get $\dfrac{{{T_3} - {T_5}}}{{{T_1}}} = {\sin ^2}x \cdot {\cos ^2}x$.
Let us find ${T_7}$ by putting $n = 7$ in equation $\left( 1 \right)$. Therefore, we get ${T_7} = {\sin ^7}x + {\cos ^7}x\; \cdots \cdots \left( 5 \right)$.
Now we are going to find R.H.S. part $\dfrac{{{T_5} - {T_7}}}{{{T_3}}}$ by using equations $\left( 3 \right),\left( 4 \right)$ and $\left( 5 \right)$.
R.H.S. $ = \dfrac{{{T_5} - {T_7}}}{{{T_3}}}$
$ = \dfrac{{\left( {{{\sin }^5}x + {{\cos }^5}x} \right) - \left( {{{\sin }^7}x + {{\cos }^7}x} \right)}}{{{{\sin }^3}x + {{\cos }^3}x}}$
$ = \dfrac{{{{\sin }^5}x + {{\cos }^5}x - {{\sin }^7}x - {{\cos }^7}x}}{{{{\sin }^3}x + {{\cos }^3}x}}$
Rewrite the above equation, we get
$ = \dfrac{{{{\sin }^5}x - {{\sin }^7}x + {{\cos }^5}x - {{\cos }^7}x}}{{{{\sin }^3}x + {{\cos }^3}x}}$
$ = \dfrac{{{{\sin }^5}x\left( {1 - {{\sin }^2}x} \right) + {{\cos }^5}x\left( {1 - {{\cos }^2}x} \right)}}{{{{\sin }^3}x + {{\cos }^3}x}}$
Now we are going to use Pythagorean identity ${\sin ^2}x + {\cos ^2}x = 1$. Note that ${\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x$ or ${\cos ^2}x = 1 - {\sin ^2}x$.
$ \Rightarrow $ R.H.S. $ = \dfrac{{{{\sin }^5}x\left( {{{\cos }^2}x} \right) + {{\cos }^5}x\left( {{{\sin }^2}x} \right)}}{{{{\sin }^3}x + {{\cos }^3}x}}$
Taking ${\sin ^2}x \cdot {\cos ^2}x$ common out from the numerator, we get
R.H.S. $ = \dfrac{{{{\sin }^2}x \cdot {{\cos }^2}x\left( {{{\sin }^3}x + {{\cos }^3}x} \right)}}{{{{\sin }^3}x + {{\cos }^3}x}}$
On cancellation of the factor ${\sin ^3}x + {\cos ^3}x$, we get
R.H.S. $ = {\sin ^2}x \cdot {\cos ^2}x$
Therefore, we get $\dfrac{{{T_5} - {T_7}}}{{{T_3}}} = {\sin ^2}x \cdot {\cos ^2}x$.
Therefore, we can say that $\dfrac{{{T_3} - {T_5}}}{{{T_1}}} = \dfrac{{{T_5} - {T_7}}}{{{T_3}}}$.
Note: There are various distinct trigonometric identities. When trigonometric functions are involved in an equation then trigonometric identities are useful to solve that equation. We can use identities $\cos e{c^2}x - {\cot ^2}x = 1$ and ${\sec ^2}x - {\tan ^2}x = 1$ to solve many trigonometric problems. These identities are called Pythagorean identities.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
