
If $\theta -\phi =\dfrac{\pi }{2}$ , then show that $\left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\cos }^{2}}\phi & \cos \phi \sin \phi \\
\cos \phi \sin \phi & {{\sin }^{2}}\phi \\
\end{matrix} \right]=0$ .
Answer
497.1k+ views
Hint: First, we rewrite the expression $\theta -\phi =\dfrac{\pi }{2}$ as $\phi =\theta -\dfrac{\pi }{2}$ . After that, using the two trigonometric identities $\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B$ and $\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$ , we develop two expressions, which are $\sin \phi =-\cos \theta $ and $\cos \phi =\sin \theta $ . After that, we rewrite the matrix as,
$\Rightarrow \left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\sin }^{2}}\theta & -\sin \theta \cos \theta \\
-\sin \theta \cos \theta & {{\cos }^{2}}\theta \\
\end{matrix} \right]$
We now multiply the two matrices to get \[\left[ \begin{matrix}
{{\cos }^{2}}\theta {{\sin }^{2}}\theta -{{\cos }^{2}}\theta {{\sin }^{2}}\theta & -{{\cos }^{3}}\theta \sin \theta +\sin \theta {{\cos }^{3}}\theta \\
\cos \theta {{\sin }^{3}}\theta -{{\sin }^{3}}\theta \cos \theta & -{{\cos }^{2}}\theta {{\sin }^{2}}\theta +{{\sin }^{2}}\theta {{\cos }^{2}}\theta \\
\end{matrix} \right]\] . Ruling out the like terms, we can arrive at the conclusion.
Complete step by step answer:
The condition that we are given is,
$\theta -\phi =\dfrac{\pi }{2}$
By taking the $\phi $ to the RHS, and $\dfrac{\pi }{2}$ to the LHS, we can write it as,
$\phi =\theta -\dfrac{\pi }{2}$
Now, we know the trigonometric identities, which are,
$\begin{align}
& \sin \left( A+B \right)=\sin A\cos B+\cos A\sin B \\
& \cos \left( A+B \right)=\cos A\cos B-\sin A\sin B \\
\end{align}$
Using these trigonometric identities, we can show that,
$\begin{align}
& \Rightarrow \sin \phi =\sin \left( \theta -\dfrac{\pi }{2} \right)=\sin \theta \cos \left( -\dfrac{\pi }{2} \right)-\cos \theta \sin \left( -\dfrac{\pi }{2} \right) \\
& \Rightarrow \sin \phi =-\cos \theta \\
\end{align}$
And that,
$\begin{align}
& \Rightarrow \cos \phi =\cos \left( \theta -\dfrac{\pi }{2} \right)=\cos \theta \cos \left( -\dfrac{\pi }{2} \right)-\sin \theta \sin \left( -\dfrac{\pi }{2} \right) \\
& \Rightarrow \cos \phi =\sin \theta \\
\end{align}$
The matrix that we need to simplify and solve is,
$\left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\cos }^{2}}\phi & \cos \phi \sin \phi \\
\cos \phi \sin \phi & {{\sin }^{2}}\phi \\
\end{matrix} \right]$
Using the above expressions that we have derived of $\sin \phi $ and $\cos \phi $ , we can rewrite the matrix as,
$\Rightarrow \left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\sin }^{2}}\theta & -\sin \theta \cos \theta \\
-\sin \theta \cos \theta & {{\cos }^{2}}\theta \\
\end{matrix} \right]$
Now, we know the multiplication of two matrices of order $2\times 2$ go as,
$\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]=\left[ \begin{matrix}
ae+bg & af+bh \\
ce+dg & cf+dh \\
\end{matrix} \right]$
So, multiplying the above matrices, we get,
\[\begin{align}
& \Rightarrow \left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\sin }^{2}}\theta & -\sin \theta \cos \theta \\
-\sin \theta \cos \theta & {{\cos }^{2}}\theta \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
{{\cos }^{2}}\theta {{\sin }^{2}}\theta -{{\left( \cos \theta \sin \theta \right)}^{2}} & -{{\cos }^{2}}\theta \sin \theta \cos \theta +\cos \theta \sin \theta {{\cos }^{2}}\theta \\
\cos \theta \sin \theta {{\sin }^{2}}\theta -{{\sin }^{2}}\theta \sin \theta \cos \theta & -{{\left( \cos \theta \sin \theta \right)}^{2}}{{\sin }^{2}}\theta {{\cos }^{2}}\theta \\
\end{matrix} \right] \\
\end{align}\]
Simplifying the above matrix elements, we get,
\[\begin{align}
& \Rightarrow \left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\sin }^{2}}\theta & -\sin \theta \cos \theta \\
-\sin \theta \cos \theta & {{\cos }^{2}}\theta \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
{{\cos }^{2}}\theta {{\sin }^{2}}\theta -{{\cos }^{2}}\theta {{\sin }^{2}}\theta & -{{\cos }^{3}}\theta \sin \theta +\sin \theta {{\cos }^{3}}\theta \\
\cos \theta {{\sin }^{3}}\theta -{{\sin }^{3}}\theta \cos \theta & -{{\cos }^{2}}\theta {{\sin }^{2}}\theta +{{\sin }^{2}}\theta {{\cos }^{2}}\theta \\
\end{matrix} \right] \\
\end{align}\]
Ruling out the like terms in the element spaces, we get,
\[\begin{align}
& \Rightarrow \left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\sin }^{2}}\theta & -\sin \theta \cos \theta \\
-\sin \theta \cos \theta & {{\cos }^{2}}\theta \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
0 & 0 \\
0 & 0 \\
\end{matrix} \right] \\
\end{align}\]
Now, we know that the matrix \[\left[ \begin{matrix}
0 & 0 \\
0 & 0 \\
\end{matrix} \right]\] is called a null matrix or a zero matrix, and can also be represented by the digit $0$ as a short form.
Thus, we have proved that the matrix $\left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\cos }^{2}}\phi & \cos \phi \sin \phi \\
\cos \phi \sin \phi & {{\sin }^{2}}\phi \\
\end{matrix} \right]=0$ if $\theta -\phi =\dfrac{\pi }{2}$ .
Note: We can also solve the problem in a similar way, but now we replace $\theta $ with $2\theta $ . To do this, we rewrite the matrix as
$\begin{align}
& \Rightarrow \left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\cos }^{2}}\phi & \cos \phi \sin \phi \\
\cos \phi \sin \phi & {{\sin }^{2}}\phi \\
\end{matrix} \right] \\
& =\dfrac{1}{4}\left[ \begin{matrix}
2{{\cos }^{2}}\theta & 2\cos \theta \sin \theta \\
2\cos \theta \sin \theta & 2{{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
2{{\cos }^{2}}\phi & 2\cos \phi \sin \phi \\
2\cos \phi \sin \phi & 2{{\sin }^{2}}\phi \\
\end{matrix} \right] \\
\end{align}$
Now, we know
$\begin{align}
& 2{{\cos }^{2}}\theta =1+\cos 2\theta \\
& 2{{\sin }^{2}}\theta =1-\cos 2\theta \\
& 2\sin \theta \cos \theta =\sin 2\theta \\
\end{align}$
Using these, we get,
$\begin{align}
& \Rightarrow \left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\cos }^{2}}\phi & \cos \phi \sin \phi \\
\cos \phi \sin \phi & {{\sin }^{2}}\phi \\
\end{matrix} \right] \\
& =\dfrac{1}{4}\left[ \begin{matrix}
1+\cos 2\theta & \sin 2\theta \\
\sin 2\theta & 1-\cos 2\theta \\
\end{matrix} \right]\left[ \begin{matrix}
1+\cos 2\phi & \sin 2\phi \\
\sin 2\phi & 1-\cos 2\phi \\
\end{matrix} \right] \\
\end{align}$
Solving this in a similar way and incorporating $\phi =\theta -\dfrac{\pi }{2}$ , we get the same required answer.
$\Rightarrow \left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\sin }^{2}}\theta & -\sin \theta \cos \theta \\
-\sin \theta \cos \theta & {{\cos }^{2}}\theta \\
\end{matrix} \right]$
We now multiply the two matrices to get \[\left[ \begin{matrix}
{{\cos }^{2}}\theta {{\sin }^{2}}\theta -{{\cos }^{2}}\theta {{\sin }^{2}}\theta & -{{\cos }^{3}}\theta \sin \theta +\sin \theta {{\cos }^{3}}\theta \\
\cos \theta {{\sin }^{3}}\theta -{{\sin }^{3}}\theta \cos \theta & -{{\cos }^{2}}\theta {{\sin }^{2}}\theta +{{\sin }^{2}}\theta {{\cos }^{2}}\theta \\
\end{matrix} \right]\] . Ruling out the like terms, we can arrive at the conclusion.
Complete step by step answer:
The condition that we are given is,
$\theta -\phi =\dfrac{\pi }{2}$
By taking the $\phi $ to the RHS, and $\dfrac{\pi }{2}$ to the LHS, we can write it as,
$\phi =\theta -\dfrac{\pi }{2}$
Now, we know the trigonometric identities, which are,
$\begin{align}
& \sin \left( A+B \right)=\sin A\cos B+\cos A\sin B \\
& \cos \left( A+B \right)=\cos A\cos B-\sin A\sin B \\
\end{align}$
Using these trigonometric identities, we can show that,
$\begin{align}
& \Rightarrow \sin \phi =\sin \left( \theta -\dfrac{\pi }{2} \right)=\sin \theta \cos \left( -\dfrac{\pi }{2} \right)-\cos \theta \sin \left( -\dfrac{\pi }{2} \right) \\
& \Rightarrow \sin \phi =-\cos \theta \\
\end{align}$
And that,
$\begin{align}
& \Rightarrow \cos \phi =\cos \left( \theta -\dfrac{\pi }{2} \right)=\cos \theta \cos \left( -\dfrac{\pi }{2} \right)-\sin \theta \sin \left( -\dfrac{\pi }{2} \right) \\
& \Rightarrow \cos \phi =\sin \theta \\
\end{align}$
The matrix that we need to simplify and solve is,
$\left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\cos }^{2}}\phi & \cos \phi \sin \phi \\
\cos \phi \sin \phi & {{\sin }^{2}}\phi \\
\end{matrix} \right]$
Using the above expressions that we have derived of $\sin \phi $ and $\cos \phi $ , we can rewrite the matrix as,
$\Rightarrow \left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\sin }^{2}}\theta & -\sin \theta \cos \theta \\
-\sin \theta \cos \theta & {{\cos }^{2}}\theta \\
\end{matrix} \right]$
Now, we know the multiplication of two matrices of order $2\times 2$ go as,
$\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]=\left[ \begin{matrix}
ae+bg & af+bh \\
ce+dg & cf+dh \\
\end{matrix} \right]$
So, multiplying the above matrices, we get,
\[\begin{align}
& \Rightarrow \left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\sin }^{2}}\theta & -\sin \theta \cos \theta \\
-\sin \theta \cos \theta & {{\cos }^{2}}\theta \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
{{\cos }^{2}}\theta {{\sin }^{2}}\theta -{{\left( \cos \theta \sin \theta \right)}^{2}} & -{{\cos }^{2}}\theta \sin \theta \cos \theta +\cos \theta \sin \theta {{\cos }^{2}}\theta \\
\cos \theta \sin \theta {{\sin }^{2}}\theta -{{\sin }^{2}}\theta \sin \theta \cos \theta & -{{\left( \cos \theta \sin \theta \right)}^{2}}{{\sin }^{2}}\theta {{\cos }^{2}}\theta \\
\end{matrix} \right] \\
\end{align}\]
Simplifying the above matrix elements, we get,
\[\begin{align}
& \Rightarrow \left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\sin }^{2}}\theta & -\sin \theta \cos \theta \\
-\sin \theta \cos \theta & {{\cos }^{2}}\theta \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
{{\cos }^{2}}\theta {{\sin }^{2}}\theta -{{\cos }^{2}}\theta {{\sin }^{2}}\theta & -{{\cos }^{3}}\theta \sin \theta +\sin \theta {{\cos }^{3}}\theta \\
\cos \theta {{\sin }^{3}}\theta -{{\sin }^{3}}\theta \cos \theta & -{{\cos }^{2}}\theta {{\sin }^{2}}\theta +{{\sin }^{2}}\theta {{\cos }^{2}}\theta \\
\end{matrix} \right] \\
\end{align}\]
Ruling out the like terms in the element spaces, we get,
\[\begin{align}
& \Rightarrow \left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\sin }^{2}}\theta & -\sin \theta \cos \theta \\
-\sin \theta \cos \theta & {{\cos }^{2}}\theta \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
0 & 0 \\
0 & 0 \\
\end{matrix} \right] \\
\end{align}\]
Now, we know that the matrix \[\left[ \begin{matrix}
0 & 0 \\
0 & 0 \\
\end{matrix} \right]\] is called a null matrix or a zero matrix, and can also be represented by the digit $0$ as a short form.
Thus, we have proved that the matrix $\left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\cos }^{2}}\phi & \cos \phi \sin \phi \\
\cos \phi \sin \phi & {{\sin }^{2}}\phi \\
\end{matrix} \right]=0$ if $\theta -\phi =\dfrac{\pi }{2}$ .
Note: We can also solve the problem in a similar way, but now we replace $\theta $ with $2\theta $ . To do this, we rewrite the matrix as
$\begin{align}
& \Rightarrow \left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\cos }^{2}}\phi & \cos \phi \sin \phi \\
\cos \phi \sin \phi & {{\sin }^{2}}\phi \\
\end{matrix} \right] \\
& =\dfrac{1}{4}\left[ \begin{matrix}
2{{\cos }^{2}}\theta & 2\cos \theta \sin \theta \\
2\cos \theta \sin \theta & 2{{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
2{{\cos }^{2}}\phi & 2\cos \phi \sin \phi \\
2\cos \phi \sin \phi & 2{{\sin }^{2}}\phi \\
\end{matrix} \right] \\
\end{align}$
Now, we know
$\begin{align}
& 2{{\cos }^{2}}\theta =1+\cos 2\theta \\
& 2{{\sin }^{2}}\theta =1-\cos 2\theta \\
& 2\sin \theta \cos \theta =\sin 2\theta \\
\end{align}$
Using these, we get,
$\begin{align}
& \Rightarrow \left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\cos }^{2}}\phi & \cos \phi \sin \phi \\
\cos \phi \sin \phi & {{\sin }^{2}}\phi \\
\end{matrix} \right] \\
& =\dfrac{1}{4}\left[ \begin{matrix}
1+\cos 2\theta & \sin 2\theta \\
\sin 2\theta & 1-\cos 2\theta \\
\end{matrix} \right]\left[ \begin{matrix}
1+\cos 2\phi & \sin 2\phi \\
\sin 2\phi & 1-\cos 2\phi \\
\end{matrix} \right] \\
\end{align}$
Solving this in a similar way and incorporating $\phi =\theta -\dfrac{\pi }{2}$ , we get the same required answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

