
If $\theta -\phi =\dfrac{\pi }{2}$ , then show that $\left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\cos }^{2}}\phi & \cos \phi \sin \phi \\
\cos \phi \sin \phi & {{\sin }^{2}}\phi \\
\end{matrix} \right]=0$ .
Answer
417.3k+ views
Hint: First, we rewrite the expression $\theta -\phi =\dfrac{\pi }{2}$ as $\phi =\theta -\dfrac{\pi }{2}$ . After that, using the two trigonometric identities $\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B$ and $\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$ , we develop two expressions, which are $\sin \phi =-\cos \theta $ and $\cos \phi =\sin \theta $ . After that, we rewrite the matrix as,
$\Rightarrow \left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\sin }^{2}}\theta & -\sin \theta \cos \theta \\
-\sin \theta \cos \theta & {{\cos }^{2}}\theta \\
\end{matrix} \right]$
We now multiply the two matrices to get \[\left[ \begin{matrix}
{{\cos }^{2}}\theta {{\sin }^{2}}\theta -{{\cos }^{2}}\theta {{\sin }^{2}}\theta & -{{\cos }^{3}}\theta \sin \theta +\sin \theta {{\cos }^{3}}\theta \\
\cos \theta {{\sin }^{3}}\theta -{{\sin }^{3}}\theta \cos \theta & -{{\cos }^{2}}\theta {{\sin }^{2}}\theta +{{\sin }^{2}}\theta {{\cos }^{2}}\theta \\
\end{matrix} \right]\] . Ruling out the like terms, we can arrive at the conclusion.
Complete step by step answer:
The condition that we are given is,
$\theta -\phi =\dfrac{\pi }{2}$
By taking the $\phi $ to the RHS, and $\dfrac{\pi }{2}$ to the LHS, we can write it as,
$\phi =\theta -\dfrac{\pi }{2}$
Now, we know the trigonometric identities, which are,
$\begin{align}
& \sin \left( A+B \right)=\sin A\cos B+\cos A\sin B \\
& \cos \left( A+B \right)=\cos A\cos B-\sin A\sin B \\
\end{align}$
Using these trigonometric identities, we can show that,
$\begin{align}
& \Rightarrow \sin \phi =\sin \left( \theta -\dfrac{\pi }{2} \right)=\sin \theta \cos \left( -\dfrac{\pi }{2} \right)-\cos \theta \sin \left( -\dfrac{\pi }{2} \right) \\
& \Rightarrow \sin \phi =-\cos \theta \\
\end{align}$
And that,
$\begin{align}
& \Rightarrow \cos \phi =\cos \left( \theta -\dfrac{\pi }{2} \right)=\cos \theta \cos \left( -\dfrac{\pi }{2} \right)-\sin \theta \sin \left( -\dfrac{\pi }{2} \right) \\
& \Rightarrow \cos \phi =\sin \theta \\
\end{align}$
The matrix that we need to simplify and solve is,
$\left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\cos }^{2}}\phi & \cos \phi \sin \phi \\
\cos \phi \sin \phi & {{\sin }^{2}}\phi \\
\end{matrix} \right]$
Using the above expressions that we have derived of $\sin \phi $ and $\cos \phi $ , we can rewrite the matrix as,
$\Rightarrow \left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\sin }^{2}}\theta & -\sin \theta \cos \theta \\
-\sin \theta \cos \theta & {{\cos }^{2}}\theta \\
\end{matrix} \right]$
Now, we know the multiplication of two matrices of order $2\times 2$ go as,
$\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]=\left[ \begin{matrix}
ae+bg & af+bh \\
ce+dg & cf+dh \\
\end{matrix} \right]$
So, multiplying the above matrices, we get,
\[\begin{align}
& \Rightarrow \left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\sin }^{2}}\theta & -\sin \theta \cos \theta \\
-\sin \theta \cos \theta & {{\cos }^{2}}\theta \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
{{\cos }^{2}}\theta {{\sin }^{2}}\theta -{{\left( \cos \theta \sin \theta \right)}^{2}} & -{{\cos }^{2}}\theta \sin \theta \cos \theta +\cos \theta \sin \theta {{\cos }^{2}}\theta \\
\cos \theta \sin \theta {{\sin }^{2}}\theta -{{\sin }^{2}}\theta \sin \theta \cos \theta & -{{\left( \cos \theta \sin \theta \right)}^{2}}{{\sin }^{2}}\theta {{\cos }^{2}}\theta \\
\end{matrix} \right] \\
\end{align}\]
Simplifying the above matrix elements, we get,
\[\begin{align}
& \Rightarrow \left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\sin }^{2}}\theta & -\sin \theta \cos \theta \\
-\sin \theta \cos \theta & {{\cos }^{2}}\theta \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
{{\cos }^{2}}\theta {{\sin }^{2}}\theta -{{\cos }^{2}}\theta {{\sin }^{2}}\theta & -{{\cos }^{3}}\theta \sin \theta +\sin \theta {{\cos }^{3}}\theta \\
\cos \theta {{\sin }^{3}}\theta -{{\sin }^{3}}\theta \cos \theta & -{{\cos }^{2}}\theta {{\sin }^{2}}\theta +{{\sin }^{2}}\theta {{\cos }^{2}}\theta \\
\end{matrix} \right] \\
\end{align}\]
Ruling out the like terms in the element spaces, we get,
\[\begin{align}
& \Rightarrow \left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\sin }^{2}}\theta & -\sin \theta \cos \theta \\
-\sin \theta \cos \theta & {{\cos }^{2}}\theta \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
0 & 0 \\
0 & 0 \\
\end{matrix} \right] \\
\end{align}\]
Now, we know that the matrix \[\left[ \begin{matrix}
0 & 0 \\
0 & 0 \\
\end{matrix} \right]\] is called a null matrix or a zero matrix, and can also be represented by the digit $0$ as a short form.
Thus, we have proved that the matrix $\left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\cos }^{2}}\phi & \cos \phi \sin \phi \\
\cos \phi \sin \phi & {{\sin }^{2}}\phi \\
\end{matrix} \right]=0$ if $\theta -\phi =\dfrac{\pi }{2}$ .
Note: We can also solve the problem in a similar way, but now we replace $\theta $ with $2\theta $ . To do this, we rewrite the matrix as
$\begin{align}
& \Rightarrow \left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\cos }^{2}}\phi & \cos \phi \sin \phi \\
\cos \phi \sin \phi & {{\sin }^{2}}\phi \\
\end{matrix} \right] \\
& =\dfrac{1}{4}\left[ \begin{matrix}
2{{\cos }^{2}}\theta & 2\cos \theta \sin \theta \\
2\cos \theta \sin \theta & 2{{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
2{{\cos }^{2}}\phi & 2\cos \phi \sin \phi \\
2\cos \phi \sin \phi & 2{{\sin }^{2}}\phi \\
\end{matrix} \right] \\
\end{align}$
Now, we know
$\begin{align}
& 2{{\cos }^{2}}\theta =1+\cos 2\theta \\
& 2{{\sin }^{2}}\theta =1-\cos 2\theta \\
& 2\sin \theta \cos \theta =\sin 2\theta \\
\end{align}$
Using these, we get,
$\begin{align}
& \Rightarrow \left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\cos }^{2}}\phi & \cos \phi \sin \phi \\
\cos \phi \sin \phi & {{\sin }^{2}}\phi \\
\end{matrix} \right] \\
& =\dfrac{1}{4}\left[ \begin{matrix}
1+\cos 2\theta & \sin 2\theta \\
\sin 2\theta & 1-\cos 2\theta \\
\end{matrix} \right]\left[ \begin{matrix}
1+\cos 2\phi & \sin 2\phi \\
\sin 2\phi & 1-\cos 2\phi \\
\end{matrix} \right] \\
\end{align}$
Solving this in a similar way and incorporating $\phi =\theta -\dfrac{\pi }{2}$ , we get the same required answer.
$\Rightarrow \left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\sin }^{2}}\theta & -\sin \theta \cos \theta \\
-\sin \theta \cos \theta & {{\cos }^{2}}\theta \\
\end{matrix} \right]$
We now multiply the two matrices to get \[\left[ \begin{matrix}
{{\cos }^{2}}\theta {{\sin }^{2}}\theta -{{\cos }^{2}}\theta {{\sin }^{2}}\theta & -{{\cos }^{3}}\theta \sin \theta +\sin \theta {{\cos }^{3}}\theta \\
\cos \theta {{\sin }^{3}}\theta -{{\sin }^{3}}\theta \cos \theta & -{{\cos }^{2}}\theta {{\sin }^{2}}\theta +{{\sin }^{2}}\theta {{\cos }^{2}}\theta \\
\end{matrix} \right]\] . Ruling out the like terms, we can arrive at the conclusion.
Complete step by step answer:
The condition that we are given is,
$\theta -\phi =\dfrac{\pi }{2}$
By taking the $\phi $ to the RHS, and $\dfrac{\pi }{2}$ to the LHS, we can write it as,
$\phi =\theta -\dfrac{\pi }{2}$
Now, we know the trigonometric identities, which are,
$\begin{align}
& \sin \left( A+B \right)=\sin A\cos B+\cos A\sin B \\
& \cos \left( A+B \right)=\cos A\cos B-\sin A\sin B \\
\end{align}$
Using these trigonometric identities, we can show that,
$\begin{align}
& \Rightarrow \sin \phi =\sin \left( \theta -\dfrac{\pi }{2} \right)=\sin \theta \cos \left( -\dfrac{\pi }{2} \right)-\cos \theta \sin \left( -\dfrac{\pi }{2} \right) \\
& \Rightarrow \sin \phi =-\cos \theta \\
\end{align}$
And that,
$\begin{align}
& \Rightarrow \cos \phi =\cos \left( \theta -\dfrac{\pi }{2} \right)=\cos \theta \cos \left( -\dfrac{\pi }{2} \right)-\sin \theta \sin \left( -\dfrac{\pi }{2} \right) \\
& \Rightarrow \cos \phi =\sin \theta \\
\end{align}$
The matrix that we need to simplify and solve is,
$\left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\cos }^{2}}\phi & \cos \phi \sin \phi \\
\cos \phi \sin \phi & {{\sin }^{2}}\phi \\
\end{matrix} \right]$
Using the above expressions that we have derived of $\sin \phi $ and $\cos \phi $ , we can rewrite the matrix as,
$\Rightarrow \left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\sin }^{2}}\theta & -\sin \theta \cos \theta \\
-\sin \theta \cos \theta & {{\cos }^{2}}\theta \\
\end{matrix} \right]$
Now, we know the multiplication of two matrices of order $2\times 2$ go as,
$\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]=\left[ \begin{matrix}
ae+bg & af+bh \\
ce+dg & cf+dh \\
\end{matrix} \right]$
So, multiplying the above matrices, we get,
\[\begin{align}
& \Rightarrow \left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\sin }^{2}}\theta & -\sin \theta \cos \theta \\
-\sin \theta \cos \theta & {{\cos }^{2}}\theta \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
{{\cos }^{2}}\theta {{\sin }^{2}}\theta -{{\left( \cos \theta \sin \theta \right)}^{2}} & -{{\cos }^{2}}\theta \sin \theta \cos \theta +\cos \theta \sin \theta {{\cos }^{2}}\theta \\
\cos \theta \sin \theta {{\sin }^{2}}\theta -{{\sin }^{2}}\theta \sin \theta \cos \theta & -{{\left( \cos \theta \sin \theta \right)}^{2}}{{\sin }^{2}}\theta {{\cos }^{2}}\theta \\
\end{matrix} \right] \\
\end{align}\]
Simplifying the above matrix elements, we get,
\[\begin{align}
& \Rightarrow \left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\sin }^{2}}\theta & -\sin \theta \cos \theta \\
-\sin \theta \cos \theta & {{\cos }^{2}}\theta \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
{{\cos }^{2}}\theta {{\sin }^{2}}\theta -{{\cos }^{2}}\theta {{\sin }^{2}}\theta & -{{\cos }^{3}}\theta \sin \theta +\sin \theta {{\cos }^{3}}\theta \\
\cos \theta {{\sin }^{3}}\theta -{{\sin }^{3}}\theta \cos \theta & -{{\cos }^{2}}\theta {{\sin }^{2}}\theta +{{\sin }^{2}}\theta {{\cos }^{2}}\theta \\
\end{matrix} \right] \\
\end{align}\]
Ruling out the like terms in the element spaces, we get,
\[\begin{align}
& \Rightarrow \left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\sin }^{2}}\theta & -\sin \theta \cos \theta \\
-\sin \theta \cos \theta & {{\cos }^{2}}\theta \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
0 & 0 \\
0 & 0 \\
\end{matrix} \right] \\
\end{align}\]
Now, we know that the matrix \[\left[ \begin{matrix}
0 & 0 \\
0 & 0 \\
\end{matrix} \right]\] is called a null matrix or a zero matrix, and can also be represented by the digit $0$ as a short form.
Thus, we have proved that the matrix $\left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\cos }^{2}}\phi & \cos \phi \sin \phi \\
\cos \phi \sin \phi & {{\sin }^{2}}\phi \\
\end{matrix} \right]=0$ if $\theta -\phi =\dfrac{\pi }{2}$ .
Note: We can also solve the problem in a similar way, but now we replace $\theta $ with $2\theta $ . To do this, we rewrite the matrix as
$\begin{align}
& \Rightarrow \left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\cos }^{2}}\phi & \cos \phi \sin \phi \\
\cos \phi \sin \phi & {{\sin }^{2}}\phi \\
\end{matrix} \right] \\
& =\dfrac{1}{4}\left[ \begin{matrix}
2{{\cos }^{2}}\theta & 2\cos \theta \sin \theta \\
2\cos \theta \sin \theta & 2{{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
2{{\cos }^{2}}\phi & 2\cos \phi \sin \phi \\
2\cos \phi \sin \phi & 2{{\sin }^{2}}\phi \\
\end{matrix} \right] \\
\end{align}$
Now, we know
$\begin{align}
& 2{{\cos }^{2}}\theta =1+\cos 2\theta \\
& 2{{\sin }^{2}}\theta =1-\cos 2\theta \\
& 2\sin \theta \cos \theta =\sin 2\theta \\
\end{align}$
Using these, we get,
$\begin{align}
& \Rightarrow \left[ \begin{matrix}
{{\cos }^{2}}\theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\left[ \begin{matrix}
{{\cos }^{2}}\phi & \cos \phi \sin \phi \\
\cos \phi \sin \phi & {{\sin }^{2}}\phi \\
\end{matrix} \right] \\
& =\dfrac{1}{4}\left[ \begin{matrix}
1+\cos 2\theta & \sin 2\theta \\
\sin 2\theta & 1-\cos 2\theta \\
\end{matrix} \right]\left[ \begin{matrix}
1+\cos 2\phi & \sin 2\phi \\
\sin 2\phi & 1-\cos 2\phi \\
\end{matrix} \right] \\
\end{align}$
Solving this in a similar way and incorporating $\phi =\theta -\dfrac{\pi }{2}$ , we get the same required answer.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
