
If the zeros of the quadratic polynomial $\text{a}{{\text{x}}^{\text{2}}}\,\text{+}\,\text{bx}\,\text{+}\,\text{c,}\,\text{c}\,\ne \,\text{0}$ all equal, then
A) c and a have opposite signs
B) c and b have opposite signs
C) c and a have the same signs
D) c and b have the same signs
Answer
595.5k+ views
Hint: As you can see in the question $\text{a}{{\text{x}}^{\text{2}}}\,\text{+}\,\text{bx}\,\text{+}\,\text{c,}\,\text{c}\,\ne \,\text{0}$ then it is clear that discriminant of the polynomial is zero using the equation for discriminant $\text{(i}\text{.e}\,{{\text{b}}^{\text{2}}}\,\text{-}\,\text{4ac)}$ we can further find which variables have same sign.
Complete step by step solution:
Now as given in the question that the zeros of polynomial $\text{a}{{\text{x}}^{\text{2}}}\,\text{+}\,\text{bx}\,\text{+}\,\text{c,}\,\text{c}\,\ne \,\text{0}$ are equal.
So the value of discriminant ‘D’ has to be zero.
$\therefore $ the equation for discriminant is,
\[{{\text{b}}^{\text{2}}}\,-\,\text{4ac}\,\text{=}\,\text{0}\]
Now, shifting the term $4\text{ac}$
\[{{\text{b}}^{\text{2}}}\,=\,\text{4ac}\]
We have to analyze one thing at this point that is the term $'{{\text{b}}^{\text{2}}}'$ on LHS can never be negative because the square of any number is always positive.
This means that the term on RHS i.e $4\text{ac}$ is also always positive.
Now, the term $'4\text{ac }\!\!'\!\!\text{ }$ to be always positive, it is necessary that both ‘a’ & ‘c’ should have the same sign (i.e either they both should be positive or both should be negative).
$\therefore $ Option (C) both c and a have the same sign is correct.
Note: A discriminant can be positive, zero or negative, and this determines how many solutions three are to a given quadratic equation. A positive discriminant indicates that quadratic has two distinct real roots. A discriminant zero indicates that the quadratic has a repeated real number solution.
Complete step by step solution:
Now as given in the question that the zeros of polynomial $\text{a}{{\text{x}}^{\text{2}}}\,\text{+}\,\text{bx}\,\text{+}\,\text{c,}\,\text{c}\,\ne \,\text{0}$ are equal.
So the value of discriminant ‘D’ has to be zero.
$\therefore $ the equation for discriminant is,
\[{{\text{b}}^{\text{2}}}\,-\,\text{4ac}\,\text{=}\,\text{0}\]
Now, shifting the term $4\text{ac}$
\[{{\text{b}}^{\text{2}}}\,=\,\text{4ac}\]
We have to analyze one thing at this point that is the term $'{{\text{b}}^{\text{2}}}'$ on LHS can never be negative because the square of any number is always positive.
This means that the term on RHS i.e $4\text{ac}$ is also always positive.
Now, the term $'4\text{ac }\!\!'\!\!\text{ }$ to be always positive, it is necessary that both ‘a’ & ‘c’ should have the same sign (i.e either they both should be positive or both should be negative).
$\therefore $ Option (C) both c and a have the same sign is correct.
Note: A discriminant can be positive, zero or negative, and this determines how many solutions three are to a given quadratic equation. A positive discriminant indicates that quadratic has two distinct real roots. A discriminant zero indicates that the quadratic has a repeated real number solution.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

