
If the zeros of the polynomial f(x) = $ax^3 + 3bx^2 +3cx + d$ are in AP, prove that $2b^3 - 3abc + a^2d$ = 0
Answer
607.2k+ views
Hint: To solve this problem, one should have theoretical knowledge of cubic equations and the relationship between their coefficients and roots. The formulas that will be used to verify this relationship are-
$$\mathrm\alpha+\mathrm\beta+\mathrm\gamma=\dfrac{-\mathrm b}{\mathrm a}\\\mathrm{\mathrm\alpha\mathrm\beta}+\mathrm{\mathrm\beta\mathrm\gamma}+\mathrm{\mathrm\gamma\mathrm\alpha}=\dfrac{\mathrm c}{\mathrm a}\\\mathrm{\mathrm\alpha\mathrm\beta\mathrm\gamma}=\dfrac{-\mathrm d}{\mathrm a}$$
Complete step-by-step answer:
Let the roots be k - r, k, k + r. By comparing with the f(x), the sum of roots is-
$$\mathrm k-\mathrm r+\mathrm k+\mathrm k+\mathrm r=-\dfrac{3\mathrm b}{\mathrm a}\\3\mathrm k=-\dfrac{3\mathrm b}{\mathrm a}\\\mathrm k=-\dfrac{\mathrm b}{\mathrm a}$$
By comparing with the f(x), the sum of the product of roots is-
$$\mathrm k\left(\mathrm k-\mathrm r\right)+\mathrm k\left(\mathrm k+\mathrm r\right)+\left(\mathrm k-\mathrm r\right)\left(\mathrm k+\mathrm r\right)=\dfrac{\mathrm c}{\mathrm a}\\\mathrm k^2-\mathrm{kr}+\mathrm k^2+\mathrm{kr}+\mathrm k^2-\mathrm r^2=\dfrac{\mathrm c}{\mathrm a}\\3\mathrm k^2-\mathrm r^2=\dfrac{\mathrm c}{\mathrm a}\\\dfrac{3\mathrm b^2}{\mathrm a^2}-\mathrm r^2=\dfrac{\mathrm c}{\mathrm a}\\\mathrm r^2=\dfrac{3\mathrm b^2-\mathrm{ac}}{\mathrm a^2}$$
By comparing with the f(x), the product of roots is-
$$\mathrm k\left(\mathrm k-\mathrm r\right)\left(\mathrm k+\mathrm r\right)=-\dfrac{\mathrm d}{\mathrm a}\\\mathrm k\left(\mathrm k^2-\mathrm r^2\right)=-\dfrac{\mathrm d}{\mathrm a}\\-\dfrac{\mathrm b}{\mathrm a}\left(\dfrac{\mathrm b^2}{\mathrm a^2}+\dfrac{\mathrm{ac}-3\mathrm b^2}{\mathrm a^2}\right)=-\dfrac{\mathrm d}{\mathrm a}\\\dfrac{-2\mathrm b^3+3\mathrm{abc}}{\mathrm a^2}=\mathrm d\\2\mathrm b^3-3\mathrm{abc}+\mathrm a^2\mathrm d=0$$
Hence, proved.
Note: In such types of questions be careful in what we assume the roots. In this question, we assumed the roots as k-r, k and k+r so that d gets cancelled and we get the value of a in the first equation itself. This makes the calculation a lot easier.
$$\mathrm\alpha+\mathrm\beta+\mathrm\gamma=\dfrac{-\mathrm b}{\mathrm a}\\\mathrm{\mathrm\alpha\mathrm\beta}+\mathrm{\mathrm\beta\mathrm\gamma}+\mathrm{\mathrm\gamma\mathrm\alpha}=\dfrac{\mathrm c}{\mathrm a}\\\mathrm{\mathrm\alpha\mathrm\beta\mathrm\gamma}=\dfrac{-\mathrm d}{\mathrm a}$$
Complete step-by-step answer:
Let the roots be k - r, k, k + r. By comparing with the f(x), the sum of roots is-
$$\mathrm k-\mathrm r+\mathrm k+\mathrm k+\mathrm r=-\dfrac{3\mathrm b}{\mathrm a}\\3\mathrm k=-\dfrac{3\mathrm b}{\mathrm a}\\\mathrm k=-\dfrac{\mathrm b}{\mathrm a}$$
By comparing with the f(x), the sum of the product of roots is-
$$\mathrm k\left(\mathrm k-\mathrm r\right)+\mathrm k\left(\mathrm k+\mathrm r\right)+\left(\mathrm k-\mathrm r\right)\left(\mathrm k+\mathrm r\right)=\dfrac{\mathrm c}{\mathrm a}\\\mathrm k^2-\mathrm{kr}+\mathrm k^2+\mathrm{kr}+\mathrm k^2-\mathrm r^2=\dfrac{\mathrm c}{\mathrm a}\\3\mathrm k^2-\mathrm r^2=\dfrac{\mathrm c}{\mathrm a}\\\dfrac{3\mathrm b^2}{\mathrm a^2}-\mathrm r^2=\dfrac{\mathrm c}{\mathrm a}\\\mathrm r^2=\dfrac{3\mathrm b^2-\mathrm{ac}}{\mathrm a^2}$$
By comparing with the f(x), the product of roots is-
$$\mathrm k\left(\mathrm k-\mathrm r\right)\left(\mathrm k+\mathrm r\right)=-\dfrac{\mathrm d}{\mathrm a}\\\mathrm k\left(\mathrm k^2-\mathrm r^2\right)=-\dfrac{\mathrm d}{\mathrm a}\\-\dfrac{\mathrm b}{\mathrm a}\left(\dfrac{\mathrm b^2}{\mathrm a^2}+\dfrac{\mathrm{ac}-3\mathrm b^2}{\mathrm a^2}\right)=-\dfrac{\mathrm d}{\mathrm a}\\\dfrac{-2\mathrm b^3+3\mathrm{abc}}{\mathrm a^2}=\mathrm d\\2\mathrm b^3-3\mathrm{abc}+\mathrm a^2\mathrm d=0$$
Hence, proved.
Note: In such types of questions be careful in what we assume the roots. In this question, we assumed the roots as k-r, k and k+r so that d gets cancelled and we get the value of a in the first equation itself. This makes the calculation a lot easier.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

