
If the vertices of a triangle are \[\left( {1,1} \right),\left( { - 2,7} \right)\] and \[\left( {3, - 3} \right)\], then its area is
A) 0 sq. units
B) 2 sq. units
C) 24 sq. units
D) 12 sq. units
Answer
566.7k+ views
Hint:
Here, we are required to find the area of the triangle whose all the three vertices are given. We will use the formula of area of a triangle and substitute the given vertices in that formula to find the required area. By this, we will get the required answer.
Formula Used:
Area of a triangle \[ = \left| {\dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]} \right|\]
Complete step by step solution:
Let the vertices of the triangle be \[A = \left( {1,1} \right)\], \[B = \left( { - 2,7} \right)\]and \[C = \left( {3, - 3} \right)\].
Hence, we have to find the area of the triangle \[ABC\] whose three vertices are given.
Now, substituting \[\left( {{x_1},{y_1}} \right) = \left( {1,1} \right)\], \[\left( {{x_2},{y_2}} \right) = \left( { - 2,7} \right)\] and \[\left( {{x_3},{y_3}} \right) = \left( {3, - 3} \right)\] in the formula Area of a triangle \[ = \left| {\dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]} \right|\], we get
Area of triangle \[ABC = \left| {\dfrac{1}{2}\left[ {1\left( {7 - \left( { - 3} \right)} \right) - 2\left( { - 3 - 1} \right) + 3\left( {1 - 7} \right)} \right]} \right|\]
Adding and subtracting the terms, we get
\[ \Rightarrow \] Area of triangle \[ABC = \left| {\dfrac{1}{2}\left[ {1\left( {10} \right) - 2\left( { - 4} \right) + 3\left( { - 6} \right)} \right]} \right|\]
Multiplying the terms, we get
\[ \Rightarrow \] Area of triangle \[ABC = \left| {\dfrac{1}{2}\left[ {10 + 8 - 18} \right]} \right|\]
Adding and subtracting the terms, we get
\[ \Rightarrow \] Area of triangle \[ABC = \left| {\dfrac{1}{2}\left[ 0 \right]} \right| = \left| 0 \right| = 0\]
Here, we have used the modulus sign because the area of the triangle cannot be negative.
Hence, Area of triangle ABC \[ = 0\] square units
Therefore, if the vertices of a triangle are \[\left( {1,1} \right),\left( { - 2,7} \right)\] and \[\left( {3, - 3} \right)\], then its area is 0 square units.
Hence, option A is the correct answer.
Note:
We can also find the area of the triangle using the help of determinants.
Area of triangle\[ = \left| {\dfrac{1}{2}\left| \begin{array}{l}{x_1}{\rm{ }}{y_1}{\rm{ }}1\\{x_2}{\rm{ }}{y_2}{\rm{ }}1\\{x_3}{\rm{ }}{y_3}{\rm{ }}1\end{array} \right|} \right|\]
Now, Substituting \[\left( {{x_1},{y_1}} \right) = \left( {1,1} \right)\], \[\left( {{x_2},{y_2}} \right) = \left( { - 2,7} \right)\] and \[\left( {{x_3},{y_3}} \right) = \left( {3, - 3} \right)\] in the above formula, we get,
Area of triangle\[ABC = \left| {\dfrac{1}{2}\left| \begin{array}{l}{\rm{ }}1{\rm{ }}1{\rm{ }}1\\ - 2{\rm{ }}7{\rm{ }}1\\{\rm{ }}3{\rm{ }} - 3{\rm{ }}1\end{array} \right|} \right|\]
Now, solving the determinant,
\[ \Rightarrow \] Area of triangle \[ABC = \left| {\dfrac{1}{2}\left[ {1\left( {7 - \left( { - 3} \right)} \right) - 1\left( { - 2 - 3} \right) + 1\left( {6 - 21} \right)} \right]} \right|\]
\[ \Rightarrow \] Area of triangle\[ABC = \left| {\dfrac{1}{2}\left[ {1\left( {10} \right) - 1\left( { - 5} \right) + 1\left( { - 15} \right)} \right]} \right|\]
Solving the above equation further, we get
\[ \Rightarrow \] Area of triangle\[ABC = \left| {\dfrac{1}{2}\left[ {10 + 5 - 15} \right]} \right| = \left| {\dfrac{0}{2}} \right| = 0\]
Therefore, area of triangle ABC \[ = 0\] square units
Hence, option A is the correct answer.
Also, we have used the ‘modulus sign’ while finding the area of the triangle because it means that we have to take the absolute value of the terms present inside it, i.e. we will only take the non-negative values of the terms present inside the modulus when we will remove it. Hence, we have used Modulus, keeping in mind that area of a triangle can never be negative.
Here, we are required to find the area of the triangle whose all the three vertices are given. We will use the formula of area of a triangle and substitute the given vertices in that formula to find the required area. By this, we will get the required answer.
Formula Used:
Area of a triangle \[ = \left| {\dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]} \right|\]
Complete step by step solution:
Let the vertices of the triangle be \[A = \left( {1,1} \right)\], \[B = \left( { - 2,7} \right)\]and \[C = \left( {3, - 3} \right)\].
Hence, we have to find the area of the triangle \[ABC\] whose three vertices are given.
Now, substituting \[\left( {{x_1},{y_1}} \right) = \left( {1,1} \right)\], \[\left( {{x_2},{y_2}} \right) = \left( { - 2,7} \right)\] and \[\left( {{x_3},{y_3}} \right) = \left( {3, - 3} \right)\] in the formula Area of a triangle \[ = \left| {\dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]} \right|\], we get
Area of triangle \[ABC = \left| {\dfrac{1}{2}\left[ {1\left( {7 - \left( { - 3} \right)} \right) - 2\left( { - 3 - 1} \right) + 3\left( {1 - 7} \right)} \right]} \right|\]
Adding and subtracting the terms, we get
\[ \Rightarrow \] Area of triangle \[ABC = \left| {\dfrac{1}{2}\left[ {1\left( {10} \right) - 2\left( { - 4} \right) + 3\left( { - 6} \right)} \right]} \right|\]
Multiplying the terms, we get
\[ \Rightarrow \] Area of triangle \[ABC = \left| {\dfrac{1}{2}\left[ {10 + 8 - 18} \right]} \right|\]
Adding and subtracting the terms, we get
\[ \Rightarrow \] Area of triangle \[ABC = \left| {\dfrac{1}{2}\left[ 0 \right]} \right| = \left| 0 \right| = 0\]
Here, we have used the modulus sign because the area of the triangle cannot be negative.
Hence, Area of triangle ABC \[ = 0\] square units
Therefore, if the vertices of a triangle are \[\left( {1,1} \right),\left( { - 2,7} \right)\] and \[\left( {3, - 3} \right)\], then its area is 0 square units.
Hence, option A is the correct answer.
Note:
We can also find the area of the triangle using the help of determinants.
Area of triangle\[ = \left| {\dfrac{1}{2}\left| \begin{array}{l}{x_1}{\rm{ }}{y_1}{\rm{ }}1\\{x_2}{\rm{ }}{y_2}{\rm{ }}1\\{x_3}{\rm{ }}{y_3}{\rm{ }}1\end{array} \right|} \right|\]
Now, Substituting \[\left( {{x_1},{y_1}} \right) = \left( {1,1} \right)\], \[\left( {{x_2},{y_2}} \right) = \left( { - 2,7} \right)\] and \[\left( {{x_3},{y_3}} \right) = \left( {3, - 3} \right)\] in the above formula, we get,
Area of triangle\[ABC = \left| {\dfrac{1}{2}\left| \begin{array}{l}{\rm{ }}1{\rm{ }}1{\rm{ }}1\\ - 2{\rm{ }}7{\rm{ }}1\\{\rm{ }}3{\rm{ }} - 3{\rm{ }}1\end{array} \right|} \right|\]
Now, solving the determinant,
\[ \Rightarrow \] Area of triangle \[ABC = \left| {\dfrac{1}{2}\left[ {1\left( {7 - \left( { - 3} \right)} \right) - 1\left( { - 2 - 3} \right) + 1\left( {6 - 21} \right)} \right]} \right|\]
\[ \Rightarrow \] Area of triangle\[ABC = \left| {\dfrac{1}{2}\left[ {1\left( {10} \right) - 1\left( { - 5} \right) + 1\left( { - 15} \right)} \right]} \right|\]
Solving the above equation further, we get
\[ \Rightarrow \] Area of triangle\[ABC = \left| {\dfrac{1}{2}\left[ {10 + 5 - 15} \right]} \right| = \left| {\dfrac{0}{2}} \right| = 0\]
Therefore, area of triangle ABC \[ = 0\] square units
Hence, option A is the correct answer.
Also, we have used the ‘modulus sign’ while finding the area of the triangle because it means that we have to take the absolute value of the terms present inside it, i.e. we will only take the non-negative values of the terms present inside the modulus when we will remove it. Hence, we have used Modulus, keeping in mind that area of a triangle can never be negative.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

