
If the vectors $\vec{b}=\left( tan\alpha ,1,\sqrt{4\sin \dfrac{\alpha }{2}} \right)$ and $\vec{c}=\left( tan\alpha ,tan\alpha ,\dfrac{-3}{\sqrt{\sin \dfrac{\alpha }{2}}} \right)$ are orthogonal and a vector $\vec{a}=\left( 1,3,sin2\alpha \right)$ makes an obtuse angle with z – axis, then the value of $\alpha $ is
(a)$(4n+1)\pi -{{\tan }^{-1}}(2)$
(b)$(4n+2)\pi -{{\tan }^{-1}}(2)$
(c)$(4n-1)\pi +{{\tan }^{-1}}(2)$
(d)$(4n-2)\pi -{{\tan }^{-1}}(2)$
Answer
585.6k+ views
Hint: To solve this question, first we will write vector $\vec{b}=\left( tan\alpha ,1,\sqrt{4\sin \dfrac{\alpha }{2}} \right)$ and $\vec{c}=\left( tan\alpha ,tan\alpha ,\dfrac{-3}{\sqrt{\sin \dfrac{\alpha }{2}}} \right)$ in terms of vector and then using condition of orthogonality which is dot product of two orthogonal vectors is zero, we will evaluate the values of $\tan \alpha $and then for n = o, we will solve each option and eliminate them one by one unless we get correct option. Hence, we will get value of $\alpha $.
Complete step by step answer:
As, in question it is given that vector $\vec{b}=\left( tan\alpha ,1,\sqrt{4\sin \dfrac{\alpha }{2}} \right)$ and vector $\vec{c}=\left( tan\alpha ,tan\alpha ,\dfrac{-3}{\sqrt{\sin \dfrac{\alpha }{2}}} \right)$ are orthogonal, ten we know that dot product of two orthogonal vectors is zero.
So, $\vec{b}.\vec{c}=0$
Dot product is done as, if we have two vectors say $\vec{a}={{x}_{1}}\hat{i}+{{y}_{1}}\hat{j}+{{z}_{1}}\hat{k}$ and $\vec{b}={{x}_{2}}\hat{i}+{{y}_{2}}\hat{j}+{{z}_{2}}\hat{k}$, then
$\vec{a}.\vec{b}={{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}}+{{z}_{1}}{{z}_{2}}$
Writing, $\vec{b}=\left( tan\alpha ,1,\sqrt{4\sin \dfrac{\alpha }{2}} \right)$in vector form we get $\vec{b}=tan\alpha \hat{i}+1\hat{j}+\sqrt{4\sin \dfrac{\alpha }{2}}\hat{k}$ and writing $\vec{c}=\left( tan\alpha ,tan\alpha ,\dfrac{-3}{\sqrt{\sin \dfrac{\alpha }{2}}} \right)$ in vector form we get $\vec{c}=tan\alpha \hat{i}+tan\alpha \hat{j}-\dfrac{3}{\sqrt{\sin \dfrac{\alpha }{2}}}\hat{k}$
So, $\vec{b}.\vec{c}=0$
$\left( tan\alpha \hat{i}-1\hat{j}+\sqrt{4\sin \dfrac{\alpha }{2}}\hat{k} \right).\left( tan\alpha \hat{i}+tan\alpha \hat{j}-\dfrac{3}{\sqrt{\sin \dfrac{\alpha }{2}}}\hat{k} \right)=0$
Using definition of dot product, we get
\[tan\alpha \times tan\alpha +(-1)\times tan\alpha +\sqrt{4\sin \dfrac{\alpha }{2}}\times -\dfrac{3}{\sqrt{\sin \dfrac{\alpha }{2}}}=0\]
On simplifying, we get
\[ta{{n}^{2}}\alpha -tan\alpha -6=0\]
Using quadratic formula $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ , to solve for value of \[tan\alpha \], we get
\[tan\alpha =\dfrac{-(-1)\pm \sqrt{{{(-1)}^{2}}-4(1)(-6)}}{2(1)}\]
On simplifying, we get
\[tan\alpha =\dfrac{1\pm \sqrt{1+24}}{2}\]
\[tan\alpha =\dfrac{1\pm \sqrt{25}}{2}\]
Or, \[tan\alpha =\dfrac{1\pm 5}{2}\]
\[tan\alpha =2,-3\]
Now, we will eliminate option one by one by putting n = 0 and solving them further.
Now, if $\alpha =(4n+1)\pi -{{\tan }^{-1}}(2)$, then
For, n = 0, we have
$\alpha =\pi -{{\tan }^{-1}}(2)$
Taking tan on both sides, we have
$\tan \alpha =\tan [\pi -{{\tan }^{-1}}(2)]$
As we know that $\tan (\pi -\theta )=-\tan \theta $
So, $\tan \alpha =-\tan [{{\tan }^{-1}}(2)]$
Or, $\tan \alpha =-2$
Putting, $\tan \alpha =-2$ in \[ta{{n}^{2}}\alpha +tan\alpha -6=0\], we get
\[{{(-2)}^{2}}-2-6=-4\ne 0\]
So, option ( a ) is not true.
Now, if $\alpha =(4n+2)\pi -{{\tan }^{-1}}(2)$, then
For, n = 0, we have
$\alpha =2\pi -{{\tan }^{-1}}(2)$
Taking tan on both sides, we have
$\tan \alpha =\tan [2\pi -{{\tan }^{-1}}(2)]$
As we know that $\tan (2\pi -\theta )=-\tan \theta $
So, $\tan \alpha =-\tan [{{\tan }^{-1}}(2)]$
Or, $\tan \alpha =-2$
Putting, $\tan \alpha =-2$ in \[ta{{n}^{2}}\alpha +tan\alpha -6=0\], we get
\[{{(-2)}^{2}}-2-6=-4\ne 0\]
So, option ( b ) is not true.
Now, if $\alpha =(4n-1)\pi +{{\tan }^{-1}}(2)$, then
For, n = 0, we have
$\alpha =-\pi +{{\tan }^{-1}}(2)$
Taking tan on both sides, we have
$\tan \alpha =\tan [-\pi +{{\tan }^{-1}}(2)]$
As we know that $\tan (-\pi +\theta )=\tan \theta $
So, $\tan \alpha =\tan [{{\tan }^{-1}}(2)]$
Or, $\tan \alpha =2$
Putting, $\tan \alpha =2$ in \[ta{{n}^{2}}\alpha +tan\alpha -6=0\], we get
\[{{2}^{2}}+2-6=0\]
So, option ( c ) is true.
Now, if $\alpha =(4n-2)\pi -{{\tan }^{-1}}(2)$, then
For, n = 0, we have
$\alpha =-2\pi -{{\tan }^{-1}}(2)$
Taking tan on both sides, we have
$\tan \alpha =\tan [-2\pi -{{\tan }^{-1}}(2)]$
As we know that $\tan (-2\pi -\theta )=-\tan \theta $
So, $\tan \alpha =-\tan [{{\tan }^{-1}}(2)]$
Or, $\tan \alpha =-2$
Putting, $\tan \alpha =-2$ in \[ta{{n}^{2}}\alpha +tan\alpha -6=0\], we get
\[{{2}^{2}}-2-6=-4\ne 0\]
So, option ( d ) is not true.
Hence, the option ( c ) is true.
Note:
To solve this question, one must know the meaning of orthogonal vectors which is perpendicular vectors, and what is a condition of orthogonality in terms of dot product which is $\vec{a}.\vec{b}=0$, for vectors \[\vec{a}\]and $\vec{b}$. One must know the sign scheme of tangent function for different quadrants. While simplifying questions, try not to make calculation mistakes as this will change the option and make the answer wrong.
Complete step by step answer:
As, in question it is given that vector $\vec{b}=\left( tan\alpha ,1,\sqrt{4\sin \dfrac{\alpha }{2}} \right)$ and vector $\vec{c}=\left( tan\alpha ,tan\alpha ,\dfrac{-3}{\sqrt{\sin \dfrac{\alpha }{2}}} \right)$ are orthogonal, ten we know that dot product of two orthogonal vectors is zero.
So, $\vec{b}.\vec{c}=0$
Dot product is done as, if we have two vectors say $\vec{a}={{x}_{1}}\hat{i}+{{y}_{1}}\hat{j}+{{z}_{1}}\hat{k}$ and $\vec{b}={{x}_{2}}\hat{i}+{{y}_{2}}\hat{j}+{{z}_{2}}\hat{k}$, then
$\vec{a}.\vec{b}={{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}}+{{z}_{1}}{{z}_{2}}$
Writing, $\vec{b}=\left( tan\alpha ,1,\sqrt{4\sin \dfrac{\alpha }{2}} \right)$in vector form we get $\vec{b}=tan\alpha \hat{i}+1\hat{j}+\sqrt{4\sin \dfrac{\alpha }{2}}\hat{k}$ and writing $\vec{c}=\left( tan\alpha ,tan\alpha ,\dfrac{-3}{\sqrt{\sin \dfrac{\alpha }{2}}} \right)$ in vector form we get $\vec{c}=tan\alpha \hat{i}+tan\alpha \hat{j}-\dfrac{3}{\sqrt{\sin \dfrac{\alpha }{2}}}\hat{k}$
So, $\vec{b}.\vec{c}=0$
$\left( tan\alpha \hat{i}-1\hat{j}+\sqrt{4\sin \dfrac{\alpha }{2}}\hat{k} \right).\left( tan\alpha \hat{i}+tan\alpha \hat{j}-\dfrac{3}{\sqrt{\sin \dfrac{\alpha }{2}}}\hat{k} \right)=0$
Using definition of dot product, we get
\[tan\alpha \times tan\alpha +(-1)\times tan\alpha +\sqrt{4\sin \dfrac{\alpha }{2}}\times -\dfrac{3}{\sqrt{\sin \dfrac{\alpha }{2}}}=0\]
On simplifying, we get
\[ta{{n}^{2}}\alpha -tan\alpha -6=0\]
Using quadratic formula $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ , to solve for value of \[tan\alpha \], we get
\[tan\alpha =\dfrac{-(-1)\pm \sqrt{{{(-1)}^{2}}-4(1)(-6)}}{2(1)}\]
On simplifying, we get
\[tan\alpha =\dfrac{1\pm \sqrt{1+24}}{2}\]
\[tan\alpha =\dfrac{1\pm \sqrt{25}}{2}\]
Or, \[tan\alpha =\dfrac{1\pm 5}{2}\]
\[tan\alpha =2,-3\]
Now, we will eliminate option one by one by putting n = 0 and solving them further.
Now, if $\alpha =(4n+1)\pi -{{\tan }^{-1}}(2)$, then
For, n = 0, we have
$\alpha =\pi -{{\tan }^{-1}}(2)$
Taking tan on both sides, we have
$\tan \alpha =\tan [\pi -{{\tan }^{-1}}(2)]$
As we know that $\tan (\pi -\theta )=-\tan \theta $
So, $\tan \alpha =-\tan [{{\tan }^{-1}}(2)]$
Or, $\tan \alpha =-2$
Putting, $\tan \alpha =-2$ in \[ta{{n}^{2}}\alpha +tan\alpha -6=0\], we get
\[{{(-2)}^{2}}-2-6=-4\ne 0\]
So, option ( a ) is not true.
Now, if $\alpha =(4n+2)\pi -{{\tan }^{-1}}(2)$, then
For, n = 0, we have
$\alpha =2\pi -{{\tan }^{-1}}(2)$
Taking tan on both sides, we have
$\tan \alpha =\tan [2\pi -{{\tan }^{-1}}(2)]$
As we know that $\tan (2\pi -\theta )=-\tan \theta $
So, $\tan \alpha =-\tan [{{\tan }^{-1}}(2)]$
Or, $\tan \alpha =-2$
Putting, $\tan \alpha =-2$ in \[ta{{n}^{2}}\alpha +tan\alpha -6=0\], we get
\[{{(-2)}^{2}}-2-6=-4\ne 0\]
So, option ( b ) is not true.
Now, if $\alpha =(4n-1)\pi +{{\tan }^{-1}}(2)$, then
For, n = 0, we have
$\alpha =-\pi +{{\tan }^{-1}}(2)$
Taking tan on both sides, we have
$\tan \alpha =\tan [-\pi +{{\tan }^{-1}}(2)]$
As we know that $\tan (-\pi +\theta )=\tan \theta $
So, $\tan \alpha =\tan [{{\tan }^{-1}}(2)]$
Or, $\tan \alpha =2$
Putting, $\tan \alpha =2$ in \[ta{{n}^{2}}\alpha +tan\alpha -6=0\], we get
\[{{2}^{2}}+2-6=0\]
So, option ( c ) is true.
Now, if $\alpha =(4n-2)\pi -{{\tan }^{-1}}(2)$, then
For, n = 0, we have
$\alpha =-2\pi -{{\tan }^{-1}}(2)$
Taking tan on both sides, we have
$\tan \alpha =\tan [-2\pi -{{\tan }^{-1}}(2)]$
As we know that $\tan (-2\pi -\theta )=-\tan \theta $
So, $\tan \alpha =-\tan [{{\tan }^{-1}}(2)]$
Or, $\tan \alpha =-2$
Putting, $\tan \alpha =-2$ in \[ta{{n}^{2}}\alpha +tan\alpha -6=0\], we get
\[{{2}^{2}}-2-6=-4\ne 0\]
So, option ( d ) is not true.
Hence, the option ( c ) is true.
Note:
To solve this question, one must know the meaning of orthogonal vectors which is perpendicular vectors, and what is a condition of orthogonality in terms of dot product which is $\vec{a}.\vec{b}=0$, for vectors \[\vec{a}\]and $\vec{b}$. One must know the sign scheme of tangent function for different quadrants. While simplifying questions, try not to make calculation mistakes as this will change the option and make the answer wrong.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

