
If the value of \[y\sqrt{{{x}^{2}}+1}=\log \left( \sqrt{{{x}^{2}}+1}-x \right)\] then find the value of \[\left( {{x}^{2}}+1 \right)\dfrac{dy}{dx}+xy+1\]
\[\begin{align}
& \text{A}.\text{ }0 \\
& \text{B}.\text{ 1} \\
& \text{C}.\text{ 2} \\
& \text{D}.\text{ None of the above}. \\
\end{align}\]
Answer
574.2k+ views
Hint: To solve this question, we will differentiate the term on LHS and RHS of the given equation separately. While doing so, we will use $\dfrac{d}{dx}\left( x \right)=1,\dfrac{d}{dx}\left( \sqrt{x} \right)=\dfrac{1}{2\sqrt{x}}\text{ and }\dfrac{d}{dx}\left( \log \left( x \right) \right)=\dfrac{1}{x}$. Then, we will equate both differentiation above. Also, at the end we will use the chain rule of differentiation stated as \[\dfrac{d}{dx}f\left( g\left( x \right) \right)=f'\left( g\left( x \right) \right)\cdot g'\left( x \right)\]
Complete step-by-step answer:
We are given;
\[y\sqrt{{{x}^{2}}+1}=\log \left( \sqrt{{{x}^{2}}+1}-x \right)\]
We will separately calculate $\dfrac{dy}{dx}\text{ and }xy$
To calculate $\dfrac{dy}{dx}$ let us first calculate equation (i) with respect to x on both sides:
\[\dfrac{d}{dx}\left( y\sqrt{{{x}^{2}}+1} \right)=\dfrac{d}{dx}\left( \log \left( \sqrt{{{x}^{2}}+1}-x \right) \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
To solve LHS of above equation we will use the product rule of differentiation stated as below:
\[\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)=f\left( x \right)\dfrac{d}{dx}\left( g\left( x \right) \right)+g\left( x \right)\dfrac{d}{dx}\left( f\left( x \right) \right)\]
Where, f (x) and g (x) are function of x.
Consider LHS of equation (ii) as ${{I}_{1}}$ then
\[{{I}_{1}}=\dfrac{d}{dx}\left( y\sqrt{{{x}^{2}}+1} \right)\]
Differentiating using product rule of differentiation we get:
\[\Rightarrow {{I}_{1}}=y\dfrac{d}{dx}\left( \sqrt{{{x}^{2}}+1} \right)+\sqrt{{{x}^{2}}+1}\dfrac{d}{dx}\]
Now, using $\dfrac{d}{dt}\sqrt{t}=\dfrac{1}{2\sqrt{t}}$ in above we get:
\[\begin{align}
& {{I}_{1}}=y\dfrac{1}{2\sqrt{{{x}^{2}}+1}}\left( 2x \right)+\sqrt{{{x}^{2}}+1}\dfrac{dy}{dx} \\
& {{I}_{1}}=\dfrac{xy}{\sqrt{{{x}^{2}}+1}}+\sqrt{{{x}^{2}}+1}\dfrac{dy}{dx}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)} \\
\end{align}\]
Now, consider RHS of equation (ii) as ${{I}_{2}}$ we have:
\[{{I}_{2}}=\dfrac{d}{dx}\left( \log \left( \sqrt{{{x}^{2}}+1}-x \right) \right)\]
Using $\dfrac{d}{dx}\log x=\dfrac{1}{x}\text{ and }\dfrac{d}{dx}\left( x \right)=1$ in above also applying chain rule of differentiation stated as \[\dfrac{d}{dx}f\left( g\left( x \right) \right)=f'\left( g\left( x \right) \right)\cdot g'\left( x \right)\]
\[\begin{align}
& {{I}_{2}}=\dfrac{1}{\left( \sqrt{{{x}^{2}}+1}-x \right)}\left( \dfrac{1}{2\sqrt{{{x}^{2}}+1}}\left( +2x \right)-\dfrac{d}{dx}\left( x \right) \right) \\
& {{I}_{2}}=\dfrac{1}{\left( \sqrt{{{x}^{2}}+1}-x \right)}\left( \dfrac{x}{\sqrt{{{x}^{2}}+1}}-1 \right) \\
& {{I}_{2}}=\dfrac{1}{\left( \sqrt{{{x}^{2}}+1}-x \right)}\left( \dfrac{-\left( -x+\sqrt{{{x}^{2}}+1} \right)}{\sqrt{{{x}^{2}}+1}} \right) \\
\end{align}\]
Cancelling the term $\left( \sqrt{{{x}^{2}}+1}-x \right)$ we get:
\[{{I}_{2}}=\dfrac{-1}{\sqrt{{{x}^{2}}+1}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iv)}\]
Now, by equation (ii) we had ${{I}_{1}}={{I}_{2}}$ so, equating ${{I}_{1}}\text{ and }{{I}_{2}}$ as obtained in equation (iii) and (iv) we get:
\[\begin{align}
& {{I}_{1}}={{I}_{2}} \\
& \Rightarrow \dfrac{xy}{\sqrt{{{x}^{2}}+1}}+\sqrt{{{x}^{2}}+1}\dfrac{dy}{dx}=\dfrac{-1}{\sqrt{{{x}^{2}}+1}} \\
\end{align}\]
Taking LCM of term on LHS of above equation:
\[\Rightarrow \dfrac{xy+\left( \sqrt{{{x}^{2}}+1} \right)\left( \sqrt{{{x}^{2}}+1} \right)\dfrac{dy}{dx}}{\sqrt{{{x}^{2}}+1}}=\dfrac{-1}{\sqrt{{{x}^{2}}+1}}\]
Cancelling $\sqrt{{{x}^{2}}+1}$ from both sides:
\[\begin{align}
& xy+\left( {{x}^{2}}+1 \right)\dfrac{dy}{dx}=-1 \\
& xy+\left( {{x}^{2}}+1 \right)\dfrac{dy}{dx}+1=0 \\
& \left( {{x}^{2}}+1 \right)\dfrac{dy}{dx}+xy+1=0 \\
\end{align}\]
Therefore, the value of \[\left( {{x}^{2}}+1 \right)\dfrac{dy}{dx}+xy+1=0\] so option A is correct.
Note: Students can get confused on the point where ${{I}_{2}}$ is calculated. It is as below:
\[{{I}_{2}}=\dfrac{d}{dx}\left( \log \left( \sqrt{{{x}^{2}}+1}-x \right) \right)\]
And as $\dfrac{d}{dt}\log t=\dfrac{1}{t}$
\[\begin{align}
& {{I}_{2}}=\dfrac{1}{\sqrt{{{x}^{2}}+1}-x}\dfrac{d}{dx}\left( \sqrt{{{x}^{2}}+1}-x \right) \\
& {{I}_{2}}=\dfrac{1}{\sqrt{{{x}^{2}}+1}-x}\left( \dfrac{1}{2\sqrt{{{x}^{2}}+1}}\dfrac{d}{dx}\left( {{x}^{2}}+1 \right)-\dfrac{d}{dx}x \right) \\
& {{I}_{2}}=\dfrac{1}{\sqrt{{{x}^{2}}+1}-x}\left( \dfrac{2}{2\sqrt{{{x}^{2}}+1}}-1 \right) \\
& {{I}_{2}}=\dfrac{1}{\sqrt{{{x}^{2}}+1}-x}\left( \dfrac{x}{\sqrt{{{x}^{2}}+1}}-1 \right) \\
\end{align}\]
This is how it is calculated.
Always remember that we apply chain rule of differentiation in such cases which is as below:
\[\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right.\left( g'\left( x \right) \right)\]
In this question, we have automatically arrived at \[\left( {{x}^{2}}+1 \right)\dfrac{dy}{dx}+xy+1=0\] if this is not the case in any other question, then we will first calculate $\dfrac{dy}{dx}\text{ and }xy$ separately then add them by given condition of question to get result.
Complete step-by-step answer:
We are given;
\[y\sqrt{{{x}^{2}}+1}=\log \left( \sqrt{{{x}^{2}}+1}-x \right)\]
We will separately calculate $\dfrac{dy}{dx}\text{ and }xy$
To calculate $\dfrac{dy}{dx}$ let us first calculate equation (i) with respect to x on both sides:
\[\dfrac{d}{dx}\left( y\sqrt{{{x}^{2}}+1} \right)=\dfrac{d}{dx}\left( \log \left( \sqrt{{{x}^{2}}+1}-x \right) \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
To solve LHS of above equation we will use the product rule of differentiation stated as below:
\[\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)=f\left( x \right)\dfrac{d}{dx}\left( g\left( x \right) \right)+g\left( x \right)\dfrac{d}{dx}\left( f\left( x \right) \right)\]
Where, f (x) and g (x) are function of x.
Consider LHS of equation (ii) as ${{I}_{1}}$ then
\[{{I}_{1}}=\dfrac{d}{dx}\left( y\sqrt{{{x}^{2}}+1} \right)\]
Differentiating using product rule of differentiation we get:
\[\Rightarrow {{I}_{1}}=y\dfrac{d}{dx}\left( \sqrt{{{x}^{2}}+1} \right)+\sqrt{{{x}^{2}}+1}\dfrac{d}{dx}\]
Now, using $\dfrac{d}{dt}\sqrt{t}=\dfrac{1}{2\sqrt{t}}$ in above we get:
\[\begin{align}
& {{I}_{1}}=y\dfrac{1}{2\sqrt{{{x}^{2}}+1}}\left( 2x \right)+\sqrt{{{x}^{2}}+1}\dfrac{dy}{dx} \\
& {{I}_{1}}=\dfrac{xy}{\sqrt{{{x}^{2}}+1}}+\sqrt{{{x}^{2}}+1}\dfrac{dy}{dx}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)} \\
\end{align}\]
Now, consider RHS of equation (ii) as ${{I}_{2}}$ we have:
\[{{I}_{2}}=\dfrac{d}{dx}\left( \log \left( \sqrt{{{x}^{2}}+1}-x \right) \right)\]
Using $\dfrac{d}{dx}\log x=\dfrac{1}{x}\text{ and }\dfrac{d}{dx}\left( x \right)=1$ in above also applying chain rule of differentiation stated as \[\dfrac{d}{dx}f\left( g\left( x \right) \right)=f'\left( g\left( x \right) \right)\cdot g'\left( x \right)\]
\[\begin{align}
& {{I}_{2}}=\dfrac{1}{\left( \sqrt{{{x}^{2}}+1}-x \right)}\left( \dfrac{1}{2\sqrt{{{x}^{2}}+1}}\left( +2x \right)-\dfrac{d}{dx}\left( x \right) \right) \\
& {{I}_{2}}=\dfrac{1}{\left( \sqrt{{{x}^{2}}+1}-x \right)}\left( \dfrac{x}{\sqrt{{{x}^{2}}+1}}-1 \right) \\
& {{I}_{2}}=\dfrac{1}{\left( \sqrt{{{x}^{2}}+1}-x \right)}\left( \dfrac{-\left( -x+\sqrt{{{x}^{2}}+1} \right)}{\sqrt{{{x}^{2}}+1}} \right) \\
\end{align}\]
Cancelling the term $\left( \sqrt{{{x}^{2}}+1}-x \right)$ we get:
\[{{I}_{2}}=\dfrac{-1}{\sqrt{{{x}^{2}}+1}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iv)}\]
Now, by equation (ii) we had ${{I}_{1}}={{I}_{2}}$ so, equating ${{I}_{1}}\text{ and }{{I}_{2}}$ as obtained in equation (iii) and (iv) we get:
\[\begin{align}
& {{I}_{1}}={{I}_{2}} \\
& \Rightarrow \dfrac{xy}{\sqrt{{{x}^{2}}+1}}+\sqrt{{{x}^{2}}+1}\dfrac{dy}{dx}=\dfrac{-1}{\sqrt{{{x}^{2}}+1}} \\
\end{align}\]
Taking LCM of term on LHS of above equation:
\[\Rightarrow \dfrac{xy+\left( \sqrt{{{x}^{2}}+1} \right)\left( \sqrt{{{x}^{2}}+1} \right)\dfrac{dy}{dx}}{\sqrt{{{x}^{2}}+1}}=\dfrac{-1}{\sqrt{{{x}^{2}}+1}}\]
Cancelling $\sqrt{{{x}^{2}}+1}$ from both sides:
\[\begin{align}
& xy+\left( {{x}^{2}}+1 \right)\dfrac{dy}{dx}=-1 \\
& xy+\left( {{x}^{2}}+1 \right)\dfrac{dy}{dx}+1=0 \\
& \left( {{x}^{2}}+1 \right)\dfrac{dy}{dx}+xy+1=0 \\
\end{align}\]
Therefore, the value of \[\left( {{x}^{2}}+1 \right)\dfrac{dy}{dx}+xy+1=0\] so option A is correct.
Note: Students can get confused on the point where ${{I}_{2}}$ is calculated. It is as below:
\[{{I}_{2}}=\dfrac{d}{dx}\left( \log \left( \sqrt{{{x}^{2}}+1}-x \right) \right)\]
And as $\dfrac{d}{dt}\log t=\dfrac{1}{t}$
\[\begin{align}
& {{I}_{2}}=\dfrac{1}{\sqrt{{{x}^{2}}+1}-x}\dfrac{d}{dx}\left( \sqrt{{{x}^{2}}+1}-x \right) \\
& {{I}_{2}}=\dfrac{1}{\sqrt{{{x}^{2}}+1}-x}\left( \dfrac{1}{2\sqrt{{{x}^{2}}+1}}\dfrac{d}{dx}\left( {{x}^{2}}+1 \right)-\dfrac{d}{dx}x \right) \\
& {{I}_{2}}=\dfrac{1}{\sqrt{{{x}^{2}}+1}-x}\left( \dfrac{2}{2\sqrt{{{x}^{2}}+1}}-1 \right) \\
& {{I}_{2}}=\dfrac{1}{\sqrt{{{x}^{2}}+1}-x}\left( \dfrac{x}{\sqrt{{{x}^{2}}+1}}-1 \right) \\
\end{align}\]
This is how it is calculated.
Always remember that we apply chain rule of differentiation in such cases which is as below:
\[\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right.\left( g'\left( x \right) \right)\]
In this question, we have automatically arrived at \[\left( {{x}^{2}}+1 \right)\dfrac{dy}{dx}+xy+1=0\] if this is not the case in any other question, then we will first calculate $\dfrac{dy}{dx}\text{ and }xy$ separately then add them by given condition of question to get result.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

