
If the value of the trigonometric ratio, i.e. ${\text{cot}}\theta {\text{ = }}\dfrac{{\text{7}}}{8}$ then find the value of $\dfrac{{\left( {{\text{1 + sin}}\theta } \right)\left( {{\text{1 - sin}}\theta } \right)}}{{\left( {{\text{1 + cos}}\theta } \right)\left( {1 - {\text{cos}}\theta } \right)}}$
Answer
617.1k+ views
Hint: In this question, we have been given the value of cot function, using that and a basic trigonometric identity which includes sine and cosine function, we simplify the equation into known trigonometric identity. Then whenever it is required we will use the following formula. i.e.
${\text{si}}{{\text{n}}^2}\theta {\text{ + co}}{{\text{s}}^2}\theta = 1 \\
\\
$
Complete step-by-step answer:
Given data
${\text{cot}}\theta {\text{ = }}\dfrac{{\text{7}}}{8}$
Now $\dfrac{{\left( {{\text{1 + sin}}\theta } \right)\left( {{\text{1 - sin}}\theta } \right)}}{{\left( {{\text{1 + cos}}\theta } \right)\left( {1 - {\text{cos}}\theta } \right)}}$= $\dfrac{{{\text{1 + sin}}\theta {\text{ - sin}}\theta {\text{ - si}}{{\text{n}}^2}\theta }}{{{\text{1 + cos}}\theta {\text{ - cos}}\theta {\text{ - co}}{{\text{s}}^2}\theta }}$
$ \Rightarrow \dfrac{{{\text{1 - si}}{{\text{n}}^2}\theta }}{{{\text{1 - co}}{{\text{s}}^2}\theta }}{\text{ - Equation 1}}$
As we know $
{\text{si}}{{\text{n}}^2}\theta {\text{ + co}}{{\text{s}}^2}\theta = 1 \\
\\
$
$
\Rightarrow {\text{si}}{{\text{n}}^2}\theta = 1 - {\text{co}}{{\text{s}}^2}\theta {\text{ and}} \\
{\text{ }}{\cos ^2}\theta = 1 - {\text{si}}{{\text{n}}^2}\theta \\
$
Using this relation to solve Equation 1 we get
$
\Rightarrow \dfrac{{{\text{1 - si}}{{\text{n}}^2}\theta }}{{{\text{1 - co}}{{\text{s}}^2}\theta }} = \dfrac{{{\text{co}}{{\text{s}}^2}\theta }}{{{\text{si}}{{\text{n}}^2}\theta }}. \\
\Rightarrow {\text{co}}{{\text{t}}^2}\theta {\text{ }}\left( {{\text{as cot}}\theta {\text{ = }}\dfrac{{{\text{cos}}\theta }}{{{\text{sin}}\theta }}} \right) \\
$
Therefore, $\dfrac{{\left( {{\text{1 + sin}}\theta } \right)\left( {{\text{1 - sin}}\theta } \right)}}{{\left( {{\text{1 + cos}}\theta } \right)\left( {1 - {\text{cos}}\theta } \right)}}$=${\left( {\dfrac{7}{8}} \right)^2} = \dfrac{{49}}{{64}}$.
Note: In such types of questions analyze the equations and perform basic mathematical operations. Then use trigonometric identities such that the required part of the problem can be reduced into a known or given trigonometric ratio. Trigonometric identities come in very handy for tackling this kind of problem.
${\text{si}}{{\text{n}}^2}\theta {\text{ + co}}{{\text{s}}^2}\theta = 1 \\
\\
$
Complete step-by-step answer:
Given data
${\text{cot}}\theta {\text{ = }}\dfrac{{\text{7}}}{8}$
Now $\dfrac{{\left( {{\text{1 + sin}}\theta } \right)\left( {{\text{1 - sin}}\theta } \right)}}{{\left( {{\text{1 + cos}}\theta } \right)\left( {1 - {\text{cos}}\theta } \right)}}$= $\dfrac{{{\text{1 + sin}}\theta {\text{ - sin}}\theta {\text{ - si}}{{\text{n}}^2}\theta }}{{{\text{1 + cos}}\theta {\text{ - cos}}\theta {\text{ - co}}{{\text{s}}^2}\theta }}$
$ \Rightarrow \dfrac{{{\text{1 - si}}{{\text{n}}^2}\theta }}{{{\text{1 - co}}{{\text{s}}^2}\theta }}{\text{ - Equation 1}}$
As we know $
{\text{si}}{{\text{n}}^2}\theta {\text{ + co}}{{\text{s}}^2}\theta = 1 \\
\\
$
$
\Rightarrow {\text{si}}{{\text{n}}^2}\theta = 1 - {\text{co}}{{\text{s}}^2}\theta {\text{ and}} \\
{\text{ }}{\cos ^2}\theta = 1 - {\text{si}}{{\text{n}}^2}\theta \\
$
Using this relation to solve Equation 1 we get
$
\Rightarrow \dfrac{{{\text{1 - si}}{{\text{n}}^2}\theta }}{{{\text{1 - co}}{{\text{s}}^2}\theta }} = \dfrac{{{\text{co}}{{\text{s}}^2}\theta }}{{{\text{si}}{{\text{n}}^2}\theta }}. \\
\Rightarrow {\text{co}}{{\text{t}}^2}\theta {\text{ }}\left( {{\text{as cot}}\theta {\text{ = }}\dfrac{{{\text{cos}}\theta }}{{{\text{sin}}\theta }}} \right) \\
$
Therefore, $\dfrac{{\left( {{\text{1 + sin}}\theta } \right)\left( {{\text{1 - sin}}\theta } \right)}}{{\left( {{\text{1 + cos}}\theta } \right)\left( {1 - {\text{cos}}\theta } \right)}}$=${\left( {\dfrac{7}{8}} \right)^2} = \dfrac{{49}}{{64}}$.
Note: In such types of questions analyze the equations and perform basic mathematical operations. Then use trigonometric identities such that the required part of the problem can be reduced into a known or given trigonometric ratio. Trigonometric identities come in very handy for tackling this kind of problem.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

