
If the value of ${{\tan }^{-1}}x+2{{\cot }^{-1}}x=\dfrac{2\pi }{3}$, then the value of x is-
A. $\sqrt{2}$
B. 3
C. $\sqrt{3}$
D. $\dfrac{\sqrt{3}-1}{\sqrt{3}+1}$
Answer
606.6k+ views
As we know from property of inverse trigonometric function we can write
${{\cot }^{-1}}x=\dfrac{\pi }{2}-{{\tan }^{-1}}x$ .Use this information to solve the question.
Complete step-by-step answer:
Given equation is ${{\tan }^{-1}}x+2{{\cot }^{-1}}x=\dfrac{2\pi }{3}$
Now from property of inverse trigonometric function we can write
${{\cot }^{-1}}x=\dfrac{\pi }{2}-{{\tan }^{-1}}x$
On substituting value of ${{\cot }^{-1}}x$ in given equation
$\Rightarrow {{\tan }^{-1}}x+2{{\cot }^{-1}}x=\dfrac{2\pi }{3}$
$\Rightarrow {{\tan }^{-1}}x+2\left( \dfrac{\pi }{2}-{{\tan }^{-1}}x \right)=\dfrac{2\pi }{3}$
$\Rightarrow {{\tan }^{-1}}x+2\times \dfrac{\pi }{2}-2{{\tan }^{-1}}x=\dfrac{2\pi }{3}$
$\Rightarrow \pi -{{\tan }^{-1}}x=\dfrac{2\pi }{3}$
.$\Rightarrow {{\tan }^{-1}}x=\pi -\dfrac{2\pi }{3}$
$\Rightarrow {{\tan }^{-1}}x=\dfrac{3\pi -2\pi }{3}$
$\Rightarrow {{\tan }^{-1}}x=\dfrac{\pi }{3}$
$\Rightarrow x=\tan \left( \dfrac{\pi }{3} \right)$ $\left\{ \begin{align}
& If\,{{\tan }^{-1}}(x)=\theta \\
& \Rightarrow x=\tan (\theta ) \\
\end{align} \right\}$
$\Rightarrow x=\sqrt{3}$
Hence option C is correct.
Note: In the above question we need to remember that we will change only one inverse trigonometric function in terms to another.
As we put value of ${{\cot }^{-1}}x$in above equation in terms of ${{\tan }^{-1}}x$and solve equation in terms of ${{\tan }^{-1}}x$. Similarly we can also write value of ${{\tan }^{-1}}x$ in terms of ${{\cot }^{-1}}x$ and then solve equation in terms of ${{\cot }^{-1}}x$.
${{\cot }^{-1}}x=\dfrac{\pi }{2}-{{\tan }^{-1}}x$ .Use this information to solve the question.
Complete step-by-step answer:
Given equation is ${{\tan }^{-1}}x+2{{\cot }^{-1}}x=\dfrac{2\pi }{3}$
Now from property of inverse trigonometric function we can write
${{\cot }^{-1}}x=\dfrac{\pi }{2}-{{\tan }^{-1}}x$
On substituting value of ${{\cot }^{-1}}x$ in given equation
$\Rightarrow {{\tan }^{-1}}x+2{{\cot }^{-1}}x=\dfrac{2\pi }{3}$
$\Rightarrow {{\tan }^{-1}}x+2\left( \dfrac{\pi }{2}-{{\tan }^{-1}}x \right)=\dfrac{2\pi }{3}$
$\Rightarrow {{\tan }^{-1}}x+2\times \dfrac{\pi }{2}-2{{\tan }^{-1}}x=\dfrac{2\pi }{3}$
$\Rightarrow \pi -{{\tan }^{-1}}x=\dfrac{2\pi }{3}$
.$\Rightarrow {{\tan }^{-1}}x=\pi -\dfrac{2\pi }{3}$
$\Rightarrow {{\tan }^{-1}}x=\dfrac{3\pi -2\pi }{3}$
$\Rightarrow {{\tan }^{-1}}x=\dfrac{\pi }{3}$
$\Rightarrow x=\tan \left( \dfrac{\pi }{3} \right)$ $\left\{ \begin{align}
& If\,{{\tan }^{-1}}(x)=\theta \\
& \Rightarrow x=\tan (\theta ) \\
\end{align} \right\}$
$\Rightarrow x=\sqrt{3}$
Hence option C is correct.
Note: In the above question we need to remember that we will change only one inverse trigonometric function in terms to another.
As we put value of ${{\cot }^{-1}}x$in above equation in terms of ${{\tan }^{-1}}x$and solve equation in terms of ${{\tan }^{-1}}x$. Similarly we can also write value of ${{\tan }^{-1}}x$ in terms of ${{\cot }^{-1}}x$ and then solve equation in terms of ${{\cot }^{-1}}x$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

