
If the value of $ \sin x+\cos x=\dfrac{1}{5} $ , then find the value of $ \tan x $ ?
Answer
569.7k+ views
Hint: We start solving the problem by squaring the given equation on both sides. We then expand the square and then make use of the results $ {{\sin }^{2}}x+{{\cos }^{2}}x=1 $ and $ 2\sin x\cos x=\sin 2x $ to proceed through the problem. We then make use of the result $ \sin 2x=\dfrac{2\tan x}{1+{{\tan }^{2}}x} $ and perform necessary calculations to get the quadratic equation in $ \tan x $ . We then factorize the quadratic equation and find the roots to get the required value(s) of $ \tan x $ .
Complete step by step answer:
According to the problem, we are given that $ \sin x+\cos x=\dfrac{1}{5} $ and we need to find the value of $ \tan x $ .
So, we have given $ \sin x+\cos x=\dfrac{1}{5} $ ---(1).
Let us square on both sides of the equation (1).
$ \Rightarrow {{\left( \sin x+\cos x \right)}^{2}}={{\left( \dfrac{1}{5} \right)}^{2}} $ .
$ \Rightarrow {{\sin }^{2}}x+{{\cos }^{2}}x+2\sin x\cos x=\dfrac{1}{25} $ ---(2).
We know that $ {{\sin }^{2}}x+{{\cos }^{2}}x=1 $ and $ 2\sin x\cos x=\sin 2x $ . Let us use this results in equation (2).
$ \Rightarrow 1+\sin 2x=\dfrac{1}{25} $ .
$ \Rightarrow \sin 2x=\dfrac{1}{25}-1 $ .
$ \Rightarrow \sin 2x=\dfrac{-24}{25} $ ---(3).
We know that $ \sin 2x=\dfrac{2\tan x}{1+{{\tan }^{2}}x} $ . Let us use this results in equation (3).
$ \Rightarrow \dfrac{2\tan x}{1+{{\tan }^{2}}x}=\dfrac{-24}{25} $ .
$ \Rightarrow \dfrac{\tan x}{1+{{\tan }^{2}}x}=\dfrac{-12}{25} $ .
$ \Rightarrow 25\tan x=-12-12{{\tan }^{2}}x $ .
$ \Rightarrow 12{{\tan }^{2}}x+25\tan x+12=0 $ .
Let us factorize the obtained quadratic equation to find the value of $ \tan x $ .
$ \Rightarrow 12{{\tan }^{2}}x+16\tan x+9\tan x+12=0 $ .
$ \Rightarrow 4\tan x\left( 3\tan x+4 \right)+3\left( 3\tan x+4 \right)=0 $ .
$ \Rightarrow \left( 4\tan x+3 \right)\left( 3\tan x+4 \right)=0 $ .
$ \Rightarrow 4\tan x+3=0 $ , $ 3\tan x+4=0 $ .
$ \Rightarrow 4\tan x=-3 $ , $ 3\tan x=-4 $ .
$ \Rightarrow \tan x=\dfrac{-3}{4} $ , $ \tan x=\dfrac{-4}{3} $ .
∴ The value of $ \tan x $ is $ \dfrac{-3}{4} $ or $ \dfrac{-4}{5} $ .
Note:
We can see that the given problem consists of a huge amount of calculation so, we need to perform each step carefully. We can also solve this problem as shown below:
We have given $ \sin x+\cos x=\dfrac{1}{5} $ ---(4).
Let us square on both sides.
$ \Rightarrow {{\left( \sin x+\cos x \right)}^{2}}={{\left( \dfrac{1}{5} \right)}^{2}} $ .
$ \Rightarrow {{\sin }^{2}}x+{{\cos }^{2}}x+2\sin x\cos x=\dfrac{1}{25} $ .
We know that $ {{\sin }^{2}}x+{{\cos }^{2}}x=1 $ .
$ \Rightarrow 1+2\sin x\cos x=\dfrac{1}{25} $ .
$ \Rightarrow 2\sin x\cos x=\dfrac{-24}{25} $ .
$ \Rightarrow -2\sin x\cos x=\dfrac{24}{25} $ .
$ \Rightarrow 1-2\sin x\cos x=\dfrac{24}{25}+1 $ .
We know that $ {{\sin }^{2}}x+{{\cos }^{2}}x=1 $ .
$ \Rightarrow {{\sin }^{2}}x+{{\cos }^{2}}x-2\sin x\cos x=\dfrac{24}{25}+1 $ .
$ \Rightarrow {{\left( \sin x-\cos x \right)}^{2}}=\dfrac{49}{25} $ .
$ \Rightarrow \sin x-\cos x=\pm \dfrac{7}{5} $ .
$ \Rightarrow \sin x=\cos x\pm \dfrac{7}{5} $ ---(5).
Let us substitute equation (5) in equation (4).
So, we get $ \cos x\pm \dfrac{7}{5}+\cos x=\dfrac{1}{5} $ .
$ \Rightarrow 2\cos x=\dfrac{1}{5}\pm \dfrac{7}{5} $ .
$ \Rightarrow 2\cos x=\dfrac{8}{5}or\dfrac{-6}{5} $ .
$ \Rightarrow \cos x=\dfrac{4}{5}or\dfrac{-3}{5} $ .
We know that $ \sec x=\dfrac{1}{\cos x} $ .
$ \Rightarrow \sec x=\dfrac{5}{4}or\dfrac{-5}{3} $ .
$ \Rightarrow {{\sec }^{2}}x=\dfrac{25}{16}or\dfrac{25}{9} $ .
$ \Rightarrow {{\sec }^{2}}x-1=\dfrac{9}{16}or\dfrac{16}{9} $ .
We know that $ {{\sec }^{2}}x-1={{\tan }^{2}}x $ .
$ \Rightarrow {{\tan }^{2}}x=\dfrac{9}{16}or\dfrac{16}{9} $ .
$ \Rightarrow \tan x=\dfrac{-3}{4}or\dfrac{-4}{3} $ .
Complete step by step answer:
According to the problem, we are given that $ \sin x+\cos x=\dfrac{1}{5} $ and we need to find the value of $ \tan x $ .
So, we have given $ \sin x+\cos x=\dfrac{1}{5} $ ---(1).
Let us square on both sides of the equation (1).
$ \Rightarrow {{\left( \sin x+\cos x \right)}^{2}}={{\left( \dfrac{1}{5} \right)}^{2}} $ .
$ \Rightarrow {{\sin }^{2}}x+{{\cos }^{2}}x+2\sin x\cos x=\dfrac{1}{25} $ ---(2).
We know that $ {{\sin }^{2}}x+{{\cos }^{2}}x=1 $ and $ 2\sin x\cos x=\sin 2x $ . Let us use this results in equation (2).
$ \Rightarrow 1+\sin 2x=\dfrac{1}{25} $ .
$ \Rightarrow \sin 2x=\dfrac{1}{25}-1 $ .
$ \Rightarrow \sin 2x=\dfrac{-24}{25} $ ---(3).
We know that $ \sin 2x=\dfrac{2\tan x}{1+{{\tan }^{2}}x} $ . Let us use this results in equation (3).
$ \Rightarrow \dfrac{2\tan x}{1+{{\tan }^{2}}x}=\dfrac{-24}{25} $ .
$ \Rightarrow \dfrac{\tan x}{1+{{\tan }^{2}}x}=\dfrac{-12}{25} $ .
$ \Rightarrow 25\tan x=-12-12{{\tan }^{2}}x $ .
$ \Rightarrow 12{{\tan }^{2}}x+25\tan x+12=0 $ .
Let us factorize the obtained quadratic equation to find the value of $ \tan x $ .
$ \Rightarrow 12{{\tan }^{2}}x+16\tan x+9\tan x+12=0 $ .
$ \Rightarrow 4\tan x\left( 3\tan x+4 \right)+3\left( 3\tan x+4 \right)=0 $ .
$ \Rightarrow \left( 4\tan x+3 \right)\left( 3\tan x+4 \right)=0 $ .
$ \Rightarrow 4\tan x+3=0 $ , $ 3\tan x+4=0 $ .
$ \Rightarrow 4\tan x=-3 $ , $ 3\tan x=-4 $ .
$ \Rightarrow \tan x=\dfrac{-3}{4} $ , $ \tan x=\dfrac{-4}{3} $ .
∴ The value of $ \tan x $ is $ \dfrac{-3}{4} $ or $ \dfrac{-4}{5} $ .
Note:
We can see that the given problem consists of a huge amount of calculation so, we need to perform each step carefully. We can also solve this problem as shown below:
We have given $ \sin x+\cos x=\dfrac{1}{5} $ ---(4).
Let us square on both sides.
$ \Rightarrow {{\left( \sin x+\cos x \right)}^{2}}={{\left( \dfrac{1}{5} \right)}^{2}} $ .
$ \Rightarrow {{\sin }^{2}}x+{{\cos }^{2}}x+2\sin x\cos x=\dfrac{1}{25} $ .
We know that $ {{\sin }^{2}}x+{{\cos }^{2}}x=1 $ .
$ \Rightarrow 1+2\sin x\cos x=\dfrac{1}{25} $ .
$ \Rightarrow 2\sin x\cos x=\dfrac{-24}{25} $ .
$ \Rightarrow -2\sin x\cos x=\dfrac{24}{25} $ .
$ \Rightarrow 1-2\sin x\cos x=\dfrac{24}{25}+1 $ .
We know that $ {{\sin }^{2}}x+{{\cos }^{2}}x=1 $ .
$ \Rightarrow {{\sin }^{2}}x+{{\cos }^{2}}x-2\sin x\cos x=\dfrac{24}{25}+1 $ .
$ \Rightarrow {{\left( \sin x-\cos x \right)}^{2}}=\dfrac{49}{25} $ .
$ \Rightarrow \sin x-\cos x=\pm \dfrac{7}{5} $ .
$ \Rightarrow \sin x=\cos x\pm \dfrac{7}{5} $ ---(5).
Let us substitute equation (5) in equation (4).
So, we get $ \cos x\pm \dfrac{7}{5}+\cos x=\dfrac{1}{5} $ .
$ \Rightarrow 2\cos x=\dfrac{1}{5}\pm \dfrac{7}{5} $ .
$ \Rightarrow 2\cos x=\dfrac{8}{5}or\dfrac{-6}{5} $ .
$ \Rightarrow \cos x=\dfrac{4}{5}or\dfrac{-3}{5} $ .
We know that $ \sec x=\dfrac{1}{\cos x} $ .
$ \Rightarrow \sec x=\dfrac{5}{4}or\dfrac{-5}{3} $ .
$ \Rightarrow {{\sec }^{2}}x=\dfrac{25}{16}or\dfrac{25}{9} $ .
$ \Rightarrow {{\sec }^{2}}x-1=\dfrac{9}{16}or\dfrac{16}{9} $ .
We know that $ {{\sec }^{2}}x-1={{\tan }^{2}}x $ .
$ \Rightarrow {{\tan }^{2}}x=\dfrac{9}{16}or\dfrac{16}{9} $ .
$ \Rightarrow \tan x=\dfrac{-3}{4}or\dfrac{-4}{3} $ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

