
If the value of \[\text{sec4A=cosec(A-2}{{\text{0}}^{\circ }})\] where 4A is an acute angle then, find the value of A.
Answer
576.9k+ views
Hint: To solve this question, we will use a basic trigonometric identity, which is given as below; \[\text{sec}\theta \text{=cosec}\left( {{90}^{\circ }}-\theta \right)\] Where $\theta $ is angle. This relation comprises relation between $\text{sec}\theta \text{ and cosec}\theta $ We will apply this to the LHS of the given equation and then compare both sides to get the value of A.
Complete step-by-step solution:
Given that \[\text{sec4A=cosec(A-2}{{\text{0}}^{\circ }})\]
Here, 4A is an acute angle.
We will use a basic trigonometric identity to solve this question. The trigonometric identity is
\[\text{sec}\theta \text{=cosec}\left( {{90}^{\circ }}-\theta \right)\]
As we are given, \[\text{sec4A=cosec(A-2}{{\text{0}}^{\circ }})\]
Here, using above identity in the left hand side, we get
\[\begin{align}
& \text{sec4A=cosec(9}{{\text{0}}^{\circ }}-4\text{A}) \\
& \Rightarrow \text{sec4A=cosec(9}{{\text{0}}^{\circ }}-4\text{A})=\text{cosec(A-2}{{\text{0}}^{\circ }}) \\
\end{align}\]
Comparing both the sides, we get:
\[\text{cosec(9}{{\text{0}}^{\circ }}-4\text{A})=\text{cosec(A-2}{{\text{0}}^{\circ }})\]
Now, as both sides has cosec, so we apply $\text{cose}{{\text{c}}^{\text{-1}}}$ on both sides, we get:
\[\begin{align}
& \text{cose}{{\text{c}}^{\text{-1}}}\left( \text{cosec(9}{{\text{0}}^{\circ }}-4\text{A}) \right)=\text{cose}{{\text{c}}^{\text{-1}}}\left( \text{cosec(A-2}{{\text{0}}^{\circ }}) \right) \\
& \Rightarrow \text{9}{{\text{0}}^{\circ }}-4\text{A}=\text{A-2}{{\text{0}}^{\circ }} \\
& \Rightarrow -4\text{A-A=-9}{{\text{0}}^{\circ }}-{{20}^{\circ }} \\
& \Rightarrow +5\text{A=+11}{{\text{0}}^{\circ }} \\
\end{align}\]
Dividing by 5, we get:
\[\begin{align}
& \text{A=}\dfrac{{{110}^{\circ }}}{5} \\
& \text{A=22}^{\circ } \\
\end{align}\]
So, we have value of \[\text{A=22}^{\circ } \]
Therefore, value of \[\text{A=22}^{\circ } \]
Note: Another way to solve this question is using \[\text{sec}\theta \text{=}\dfrac{1}{\text{cos}\theta }\text{ and sin}\theta \dfrac{1}{\text{cosec}\theta }\] trigonometric identity.
We are given \[\text{sec4A=cosec(A-2}{{\text{0}}^{\circ }})\] Applying identity we get \[\dfrac{1}{\text{cos4A}}=\dfrac{1}{\text{sin}\left( A-{{20}^{\circ }} \right)}\Rightarrow \text{cos4A=sin}\left( A-{{20}^{\circ }} \right)\]
Now, we will use trigonometric identity as \[\text{cos}\theta \text{=sin}\left( {{90}^{\circ }}-\theta \right)\Rightarrow \text{sin}\left( {{90}^{\circ }}-4\text{A} \right)=\text{sin}\left( \text{A-2}{{\text{0}}^{\circ }} \right)\]
Applying $\text{si}{{\text{n}}^{-1}}$ both sides, we get:
\[\begin{align}
& {{90}^{\circ }}-4\text{A=A-2}{{\text{0}}^{\circ }} \\
& \Rightarrow 5A={{110}^{\circ }} \\
& \Rightarrow A={{22}^{\circ }} \\
\end{align}\]
Complete step-by-step solution:
Given that \[\text{sec4A=cosec(A-2}{{\text{0}}^{\circ }})\]
Here, 4A is an acute angle.
We will use a basic trigonometric identity to solve this question. The trigonometric identity is
\[\text{sec}\theta \text{=cosec}\left( {{90}^{\circ }}-\theta \right)\]
As we are given, \[\text{sec4A=cosec(A-2}{{\text{0}}^{\circ }})\]
Here, using above identity in the left hand side, we get
\[\begin{align}
& \text{sec4A=cosec(9}{{\text{0}}^{\circ }}-4\text{A}) \\
& \Rightarrow \text{sec4A=cosec(9}{{\text{0}}^{\circ }}-4\text{A})=\text{cosec(A-2}{{\text{0}}^{\circ }}) \\
\end{align}\]
Comparing both the sides, we get:
\[\text{cosec(9}{{\text{0}}^{\circ }}-4\text{A})=\text{cosec(A-2}{{\text{0}}^{\circ }})\]
Now, as both sides has cosec, so we apply $\text{cose}{{\text{c}}^{\text{-1}}}$ on both sides, we get:
\[\begin{align}
& \text{cose}{{\text{c}}^{\text{-1}}}\left( \text{cosec(9}{{\text{0}}^{\circ }}-4\text{A}) \right)=\text{cose}{{\text{c}}^{\text{-1}}}\left( \text{cosec(A-2}{{\text{0}}^{\circ }}) \right) \\
& \Rightarrow \text{9}{{\text{0}}^{\circ }}-4\text{A}=\text{A-2}{{\text{0}}^{\circ }} \\
& \Rightarrow -4\text{A-A=-9}{{\text{0}}^{\circ }}-{{20}^{\circ }} \\
& \Rightarrow +5\text{A=+11}{{\text{0}}^{\circ }} \\
\end{align}\]
Dividing by 5, we get:
\[\begin{align}
& \text{A=}\dfrac{{{110}^{\circ }}}{5} \\
& \text{A=22}^{\circ } \\
\end{align}\]
So, we have value of \[\text{A=22}^{\circ } \]
Therefore, value of \[\text{A=22}^{\circ } \]
Note: Another way to solve this question is using \[\text{sec}\theta \text{=}\dfrac{1}{\text{cos}\theta }\text{ and sin}\theta \dfrac{1}{\text{cosec}\theta }\] trigonometric identity.
We are given \[\text{sec4A=cosec(A-2}{{\text{0}}^{\circ }})\] Applying identity we get \[\dfrac{1}{\text{cos4A}}=\dfrac{1}{\text{sin}\left( A-{{20}^{\circ }} \right)}\Rightarrow \text{cos4A=sin}\left( A-{{20}^{\circ }} \right)\]
Now, we will use trigonometric identity as \[\text{cos}\theta \text{=sin}\left( {{90}^{\circ }}-\theta \right)\Rightarrow \text{sin}\left( {{90}^{\circ }}-4\text{A} \right)=\text{sin}\left( \text{A-2}{{\text{0}}^{\circ }} \right)\]
Applying $\text{si}{{\text{n}}^{-1}}$ both sides, we get:
\[\begin{align}
& {{90}^{\circ }}-4\text{A=A-2}{{\text{0}}^{\circ }} \\
& \Rightarrow 5A={{110}^{\circ }} \\
& \Rightarrow A={{22}^{\circ }} \\
\end{align}\]
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

