
If the trigonometric expression as \[\sec \left( \alpha \right)+\tan \left( \alpha \right)=m,\] then \[{{\left( \sec \left( \alpha \right) \right)}^{4}}-{{\left( \tan \left( \alpha \right) \right)}^{4}}-2\sec \left( \alpha \right)\tan \left( \alpha \right)\] is
(A) \[{{m}^{2}}\]
(B) \[-{{m}^{2}}\]
(C) \[\dfrac{1}{{{m}^{2}}}\]
(D) \[-\dfrac{1}{{{m}^{2}}}\]
Answer
508.5k+ views
Hint: Here to solve this type of problem always make the expression in given equation terms. Apply \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\] and trigonometric equations to solve this problem. like\[{{\left[ {{\left( \sec \left( \alpha \right) \right)}^{2}} \right]}^{2}}-{{\left[ {{\left( \tan \left( \alpha \right) \right)}^{2}} \right]}^{2}}\]and then we will compare this term with the above formula and then we will solve the above question. Using this formula, we will reduce the given trigonometric term and get to the final answer.
Complete step-by-step solution:
So, here in the above question we have, Given that the \[\sec \left( \alpha \right)+\tan \left( \alpha \right)=m\]
\[\Rightarrow {{\left( \sec \left( \alpha \right) \right)}^{4}}-{{\left( \tan \left( \alpha \right) \right)}^{4}}-2\sec \left( \alpha \right)\tan \left( \alpha \right)\]
We can also write the above expression as
\[\Rightarrow {{\left[ {{\left( \sec \left( \alpha \right) \right)}^{2}} \right]}^{2}}-{{\left[ {{\left( \tan \left( \alpha \right) \right)}^{2}} \right]}^{2}}-2\sec \left( \alpha \right)\tan \left( \alpha \right)\]
Assume \[a={{\left( \sec \left( \alpha \right) \right)}^{2}}\]and \[b={{\left( \tan \left( \alpha \right) \right)}^{2}}\] apply formula \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\] after this we will put the values in the formulas and get the final answer
\[\Rightarrow \left[ {{\left( \sec \left( \alpha \right) \right)}^{2}}+{{\left( \tan \left( \alpha \right) \right)}^{2}} \right]\left[ {{\left( \sec \left( \alpha \right) \right)}^{2}}-{{\left( \tan \left( \alpha \right) \right)}^{2}} \right]-2\sec \left( \alpha \right)\tan \left( \alpha \right)\]
As we know the trigonometric expression \[{{\left( \sec \left( \alpha \right) \right)}^{2}}-{{\left( \tan \left( \alpha \right) \right)}^{2}}=1\] with the help of this formula we will get to the final answer
\[\begin{align}
& \Rightarrow {{\left( \sec \left( \alpha \right) \right)}^{2}}+{{\left( \tan \left( \alpha \right) \right)}^{2}}-2\sec \left( \alpha \right)\tan \left( \alpha \right) \\
& \Rightarrow {{\left( \sec \left( \alpha \right)-\tan \left( \alpha \right) \right)}^{2}} \\
\end{align}\]
As we have the formula \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\] we will reduce the above equation.
The trigonometric expression \[{{\left( \sec \left( \alpha \right) \right)}^{2}}-{{\left( \tan \left( \alpha \right) \right)}^{2}}=1\] and assume \[a=\sec \left( \alpha \right)\] and \[b=\tan \left( \alpha \right)\] then we will apply this formula \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\].
\[\begin{align}
& {{\left( \sec \left( \alpha \right) \right)}^{2}}-{{\left( \tan \left( \alpha \right) \right)}^{2}}=1 \\
& \left( \sec \left( \alpha \right)-\tan \left( \alpha \right) \right)\left( \sec \left( \alpha \right)+\tan \left( \alpha \right) \right)=1 \\
& \sec \left( \alpha \right)-\tan \left( \alpha \right)=\dfrac{1}{\left( \sec \left( \alpha \right)+\tan \left( \alpha \right) \right)} \\
\end{align}\]
Also, we have Given that \[\sec \left( \alpha \right)+\tan \left( \alpha \right)=m\] in the question we will put this in the above so that we will get to the final answer.
\[\sec \left( \alpha \right)-\tan \left( \alpha \right)=\dfrac{1}{m}\]
Now we will squaring to the both side then we will get,
\[\begin{align}
& \Rightarrow {{\left( \sec \left( \alpha \right)-\tan \left( \alpha \right) \right)}^{2}}={{\left( \dfrac{1}{m} \right)}^{2}} \\
& \Rightarrow \dfrac{1}{{{m}^{2}}} \\
\end{align}\]
Hence, the Option (C) is the correct option.
Note: We can solve this question by various methods and we will get the same answer for every method. the Other method is to change everything in sin and cosine form like we know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$ with the help of this substitution we can solve this question and then find the values of either sin or cosine. We will get our answer.
Complete step-by-step solution:
So, here in the above question we have, Given that the \[\sec \left( \alpha \right)+\tan \left( \alpha \right)=m\]
\[\Rightarrow {{\left( \sec \left( \alpha \right) \right)}^{4}}-{{\left( \tan \left( \alpha \right) \right)}^{4}}-2\sec \left( \alpha \right)\tan \left( \alpha \right)\]
We can also write the above expression as
\[\Rightarrow {{\left[ {{\left( \sec \left( \alpha \right) \right)}^{2}} \right]}^{2}}-{{\left[ {{\left( \tan \left( \alpha \right) \right)}^{2}} \right]}^{2}}-2\sec \left( \alpha \right)\tan \left( \alpha \right)\]
Assume \[a={{\left( \sec \left( \alpha \right) \right)}^{2}}\]and \[b={{\left( \tan \left( \alpha \right) \right)}^{2}}\] apply formula \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\] after this we will put the values in the formulas and get the final answer
\[\Rightarrow \left[ {{\left( \sec \left( \alpha \right) \right)}^{2}}+{{\left( \tan \left( \alpha \right) \right)}^{2}} \right]\left[ {{\left( \sec \left( \alpha \right) \right)}^{2}}-{{\left( \tan \left( \alpha \right) \right)}^{2}} \right]-2\sec \left( \alpha \right)\tan \left( \alpha \right)\]
As we know the trigonometric expression \[{{\left( \sec \left( \alpha \right) \right)}^{2}}-{{\left( \tan \left( \alpha \right) \right)}^{2}}=1\] with the help of this formula we will get to the final answer
\[\begin{align}
& \Rightarrow {{\left( \sec \left( \alpha \right) \right)}^{2}}+{{\left( \tan \left( \alpha \right) \right)}^{2}}-2\sec \left( \alpha \right)\tan \left( \alpha \right) \\
& \Rightarrow {{\left( \sec \left( \alpha \right)-\tan \left( \alpha \right) \right)}^{2}} \\
\end{align}\]
As we have the formula \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\] we will reduce the above equation.
The trigonometric expression \[{{\left( \sec \left( \alpha \right) \right)}^{2}}-{{\left( \tan \left( \alpha \right) \right)}^{2}}=1\] and assume \[a=\sec \left( \alpha \right)\] and \[b=\tan \left( \alpha \right)\] then we will apply this formula \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\].
\[\begin{align}
& {{\left( \sec \left( \alpha \right) \right)}^{2}}-{{\left( \tan \left( \alpha \right) \right)}^{2}}=1 \\
& \left( \sec \left( \alpha \right)-\tan \left( \alpha \right) \right)\left( \sec \left( \alpha \right)+\tan \left( \alpha \right) \right)=1 \\
& \sec \left( \alpha \right)-\tan \left( \alpha \right)=\dfrac{1}{\left( \sec \left( \alpha \right)+\tan \left( \alpha \right) \right)} \\
\end{align}\]
Also, we have Given that \[\sec \left( \alpha \right)+\tan \left( \alpha \right)=m\] in the question we will put this in the above so that we will get to the final answer.
\[\sec \left( \alpha \right)-\tan \left( \alpha \right)=\dfrac{1}{m}\]
Now we will squaring to the both side then we will get,
\[\begin{align}
& \Rightarrow {{\left( \sec \left( \alpha \right)-\tan \left( \alpha \right) \right)}^{2}}={{\left( \dfrac{1}{m} \right)}^{2}} \\
& \Rightarrow \dfrac{1}{{{m}^{2}}} \\
\end{align}\]
Hence, the Option (C) is the correct option.
Note: We can solve this question by various methods and we will get the same answer for every method. the Other method is to change everything in sin and cosine form like we know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$ with the help of this substitution we can solve this question and then find the values of either sin or cosine. We will get our answer.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE
