
If the trigonometric expression as \[\sec \left( \alpha \right)+\tan \left( \alpha \right)=m,\] then \[{{\left( \sec \left( \alpha \right) \right)}^{4}}-{{\left( \tan \left( \alpha \right) \right)}^{4}}-2\sec \left( \alpha \right)\tan \left( \alpha \right)\] is
(A) \[{{m}^{2}}\]
(B) \[-{{m}^{2}}\]
(C) \[\dfrac{1}{{{m}^{2}}}\]
(D) \[-\dfrac{1}{{{m}^{2}}}\]
Answer
588.9k+ views
Hint: Here to solve this type of problem always make the expression in given equation terms. Apply \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\] and trigonometric equations to solve this problem. like\[{{\left[ {{\left( \sec \left( \alpha \right) \right)}^{2}} \right]}^{2}}-{{\left[ {{\left( \tan \left( \alpha \right) \right)}^{2}} \right]}^{2}}\]and then we will compare this term with the above formula and then we will solve the above question. Using this formula, we will reduce the given trigonometric term and get to the final answer.
Complete step-by-step solution:
So, here in the above question we have, Given that the \[\sec \left( \alpha \right)+\tan \left( \alpha \right)=m\]
\[\Rightarrow {{\left( \sec \left( \alpha \right) \right)}^{4}}-{{\left( \tan \left( \alpha \right) \right)}^{4}}-2\sec \left( \alpha \right)\tan \left( \alpha \right)\]
We can also write the above expression as
\[\Rightarrow {{\left[ {{\left( \sec \left( \alpha \right) \right)}^{2}} \right]}^{2}}-{{\left[ {{\left( \tan \left( \alpha \right) \right)}^{2}} \right]}^{2}}-2\sec \left( \alpha \right)\tan \left( \alpha \right)\]
Assume \[a={{\left( \sec \left( \alpha \right) \right)}^{2}}\]and \[b={{\left( \tan \left( \alpha \right) \right)}^{2}}\] apply formula \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\] after this we will put the values in the formulas and get the final answer
\[\Rightarrow \left[ {{\left( \sec \left( \alpha \right) \right)}^{2}}+{{\left( \tan \left( \alpha \right) \right)}^{2}} \right]\left[ {{\left( \sec \left( \alpha \right) \right)}^{2}}-{{\left( \tan \left( \alpha \right) \right)}^{2}} \right]-2\sec \left( \alpha \right)\tan \left( \alpha \right)\]
As we know the trigonometric expression \[{{\left( \sec \left( \alpha \right) \right)}^{2}}-{{\left( \tan \left( \alpha \right) \right)}^{2}}=1\] with the help of this formula we will get to the final answer
\[\begin{align}
& \Rightarrow {{\left( \sec \left( \alpha \right) \right)}^{2}}+{{\left( \tan \left( \alpha \right) \right)}^{2}}-2\sec \left( \alpha \right)\tan \left( \alpha \right) \\
& \Rightarrow {{\left( \sec \left( \alpha \right)-\tan \left( \alpha \right) \right)}^{2}} \\
\end{align}\]
As we have the formula \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\] we will reduce the above equation.
The trigonometric expression \[{{\left( \sec \left( \alpha \right) \right)}^{2}}-{{\left( \tan \left( \alpha \right) \right)}^{2}}=1\] and assume \[a=\sec \left( \alpha \right)\] and \[b=\tan \left( \alpha \right)\] then we will apply this formula \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\].
\[\begin{align}
& {{\left( \sec \left( \alpha \right) \right)}^{2}}-{{\left( \tan \left( \alpha \right) \right)}^{2}}=1 \\
& \left( \sec \left( \alpha \right)-\tan \left( \alpha \right) \right)\left( \sec \left( \alpha \right)+\tan \left( \alpha \right) \right)=1 \\
& \sec \left( \alpha \right)-\tan \left( \alpha \right)=\dfrac{1}{\left( \sec \left( \alpha \right)+\tan \left( \alpha \right) \right)} \\
\end{align}\]
Also, we have Given that \[\sec \left( \alpha \right)+\tan \left( \alpha \right)=m\] in the question we will put this in the above so that we will get to the final answer.
\[\sec \left( \alpha \right)-\tan \left( \alpha \right)=\dfrac{1}{m}\]
Now we will squaring to the both side then we will get,
\[\begin{align}
& \Rightarrow {{\left( \sec \left( \alpha \right)-\tan \left( \alpha \right) \right)}^{2}}={{\left( \dfrac{1}{m} \right)}^{2}} \\
& \Rightarrow \dfrac{1}{{{m}^{2}}} \\
\end{align}\]
Hence, the Option (C) is the correct option.
Note: We can solve this question by various methods and we will get the same answer for every method. the Other method is to change everything in sin and cosine form like we know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$ with the help of this substitution we can solve this question and then find the values of either sin or cosine. We will get our answer.
Complete step-by-step solution:
So, here in the above question we have, Given that the \[\sec \left( \alpha \right)+\tan \left( \alpha \right)=m\]
\[\Rightarrow {{\left( \sec \left( \alpha \right) \right)}^{4}}-{{\left( \tan \left( \alpha \right) \right)}^{4}}-2\sec \left( \alpha \right)\tan \left( \alpha \right)\]
We can also write the above expression as
\[\Rightarrow {{\left[ {{\left( \sec \left( \alpha \right) \right)}^{2}} \right]}^{2}}-{{\left[ {{\left( \tan \left( \alpha \right) \right)}^{2}} \right]}^{2}}-2\sec \left( \alpha \right)\tan \left( \alpha \right)\]
Assume \[a={{\left( \sec \left( \alpha \right) \right)}^{2}}\]and \[b={{\left( \tan \left( \alpha \right) \right)}^{2}}\] apply formula \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\] after this we will put the values in the formulas and get the final answer
\[\Rightarrow \left[ {{\left( \sec \left( \alpha \right) \right)}^{2}}+{{\left( \tan \left( \alpha \right) \right)}^{2}} \right]\left[ {{\left( \sec \left( \alpha \right) \right)}^{2}}-{{\left( \tan \left( \alpha \right) \right)}^{2}} \right]-2\sec \left( \alpha \right)\tan \left( \alpha \right)\]
As we know the trigonometric expression \[{{\left( \sec \left( \alpha \right) \right)}^{2}}-{{\left( \tan \left( \alpha \right) \right)}^{2}}=1\] with the help of this formula we will get to the final answer
\[\begin{align}
& \Rightarrow {{\left( \sec \left( \alpha \right) \right)}^{2}}+{{\left( \tan \left( \alpha \right) \right)}^{2}}-2\sec \left( \alpha \right)\tan \left( \alpha \right) \\
& \Rightarrow {{\left( \sec \left( \alpha \right)-\tan \left( \alpha \right) \right)}^{2}} \\
\end{align}\]
As we have the formula \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\] we will reduce the above equation.
The trigonometric expression \[{{\left( \sec \left( \alpha \right) \right)}^{2}}-{{\left( \tan \left( \alpha \right) \right)}^{2}}=1\] and assume \[a=\sec \left( \alpha \right)\] and \[b=\tan \left( \alpha \right)\] then we will apply this formula \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\].
\[\begin{align}
& {{\left( \sec \left( \alpha \right) \right)}^{2}}-{{\left( \tan \left( \alpha \right) \right)}^{2}}=1 \\
& \left( \sec \left( \alpha \right)-\tan \left( \alpha \right) \right)\left( \sec \left( \alpha \right)+\tan \left( \alpha \right) \right)=1 \\
& \sec \left( \alpha \right)-\tan \left( \alpha \right)=\dfrac{1}{\left( \sec \left( \alpha \right)+\tan \left( \alpha \right) \right)} \\
\end{align}\]
Also, we have Given that \[\sec \left( \alpha \right)+\tan \left( \alpha \right)=m\] in the question we will put this in the above so that we will get to the final answer.
\[\sec \left( \alpha \right)-\tan \left( \alpha \right)=\dfrac{1}{m}\]
Now we will squaring to the both side then we will get,
\[\begin{align}
& \Rightarrow {{\left( \sec \left( \alpha \right)-\tan \left( \alpha \right) \right)}^{2}}={{\left( \dfrac{1}{m} \right)}^{2}} \\
& \Rightarrow \dfrac{1}{{{m}^{2}}} \\
\end{align}\]
Hence, the Option (C) is the correct option.
Note: We can solve this question by various methods and we will get the same answer for every method. the Other method is to change everything in sin and cosine form like we know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$ with the help of this substitution we can solve this question and then find the values of either sin or cosine. We will get our answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

