
If the tangents drawn at P (3,2$\sqrt{3}$ ) and Q (2, -2$\sqrt{2}$ ) to the parabola ${{y}^{2}}=4x$ intersects at T. Then find the co-ordinates of T and ar $\Delta $ PQT: ar $\Delta $ VPQ, where V is the vertex of the parabola.
Answer
571.2k+ views
Hint: In order to solve the above problem, first we will find tangent at P and Q and then solve these tangent equations to get the intersection point T. Then we will find the area of $\Delta $ PQT using determinant formula, that is suppose if the coordinates of vertex of a triangle is given as A , B $\left( {{x}_{2}},{{y}_{2}} \right)$ and C $\left( {{x}_{3}},{{y}_{3}} \right)$ then the area of triangle ABC using determinant formula is given by $\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|$. And then we will find the area of $\Delta $ VPQ using same determinant formula, where V is vertex of parabola. After that we will find the ratio of their areas and get the desired result.
Complete step by step answer:
The equation of given parabola is ${{y}^{2}}=4x$
Generally, equation of tangent to a parabola ${{y}^{2}}=4ax$ at $({{x}_{1}},{{y}_{1}})$ is given by $y{{y}_{1}}-2a(x+{{x}_{1}})=0$ , so the equation of tangent to the parabola at point P (3,2$\sqrt{3}$ ) is given by $y(2\sqrt{3})-2(x+2)=0$ i.e. \[\sqrt{3}y-x-3=0\] .........(i)
and the equation of tangent to the parabola at Q (2, -2$\sqrt{2}$ ) is given by $y(-2\sqrt{2})-2(x+2)=0$ i.e. $\sqrt{2}y+x+2=0$ ...........(ii)
Adding equations (i) and (ii), we get
$\begin{align}
& y(\sqrt{2}+\sqrt{3})-1=0 \\
& \Rightarrow y=\dfrac{1}{\sqrt{2}+\sqrt{3}} \\
& \Rightarrow y=\dfrac{1}{\sqrt{2}+\sqrt{3}}\times \dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}} \\
& \Rightarrow y=\sqrt{2}-\sqrt{3} \\
\end{align}$
Putting ,the value of y in equation (i), we get
$\begin{align}
& \sqrt{3}(\sqrt{3}-\sqrt{2})-x-3=0 \\
& \Rightarrow x=-\sqrt{6} \\
\end{align}$
Therefore coordinate of T is $(-\sqrt{6},\sqrt{3}-\sqrt{2})$ .
Now, we have, P (3,2$\sqrt{3}$ ), Q (2, -2$\sqrt{2}$ ), T$(-\sqrt{6},\sqrt{3}-\sqrt{2})$,
$\therefore $ Area of $\Delta $ PQT =
$\dfrac{1}{2}\left| \begin{matrix}
3 & 2\sqrt{3} & 1 \\
2 & -2\sqrt{2} & 1 \\
-\sqrt{6} & \sqrt{3}-\sqrt{2} & 1 \\
\end{matrix} \right|$
Applying row transformations on ${{R}_{1}}\text{ and }{{R}_{2}}$ that is ${{R}_{1}}\to {{R}_{1}}-{{R}_{3}}\text{ and }{{R}_{2}}\to {{R}_{2}}-{{R}_{3}}$ , we have
Area of $\Delta $ PQT =
$\dfrac{1}{2}\left| \begin{matrix}
3+\sqrt{6} & \sqrt{3}+\sqrt{2} & 0 \\
2+\sqrt{6} & -\sqrt{3}-\sqrt{2} & 0 \\
-\sqrt{6} & \sqrt{3}-\sqrt{2} & 1 \\
\end{matrix} \right|$
Expanding the determinant along ${{C}_{3}}$ , we have
Area of $\Delta $ PQT
$\begin{align}
& =\dfrac{1}{2}\left[ -\sqrt{3}\left( \sqrt{3}+\sqrt{2} \right)\left( \sqrt{3}+\sqrt{2} \right)-\sqrt{2}\left( \sqrt{3}+\sqrt{2} \right)\left( \sqrt{3}+\sqrt{2} \right) \right] \\
& =\dfrac{1}{2}\left[ -{{\left( \sqrt{3}+\sqrt{2} \right)}^{2}}\left( \sqrt{3}+\sqrt{2} \right) \right] \\
& ={{\dfrac{-\left( \sqrt{3}+\sqrt{2} \right)}{2}}^{3}} \\
\end{align}$
But since area is always positive, so taking modulus of area, we have
$\text{Area of }\Delta \text{PQT}=\left| \dfrac{-{{\left( \sqrt{3}+\sqrt{2} \right)}^{3}}}{2} \right|=\dfrac{{{\left( \sqrt{3}+\sqrt{2} \right)}^{3}}}{2}$
Similarly, we have P (3,2$\sqrt{3}$ ), Q (2, -2$\sqrt{2}$ ), V (0,0) ,
$\therefore $ Area of $\Delta $ VPQ $=\dfrac{1}{2}\left| \begin{matrix}
0 & 0 & 1 \\
2 & 2\sqrt{3} & 1 \\
2 & -2\sqrt{2} & 1 \\
\end{matrix} \right|$
Expanding the determinant along ${{R}_{\,1}}$ , we have
Area of $\Delta $ VPQ
\[\begin{align}
& =\dfrac{1}{2}\left[ 1\left( -6\sqrt{2}-4\sqrt{3} \right) \right] \\
& =\dfrac{1}{2}\left[ -2\sqrt{6}\left( \sqrt{3}+\sqrt{2} \right) \right] \\
& =\dfrac{-2\sqrt{6}\left( \sqrt{3}+\sqrt{2} \right)}{2} \\
\end{align}\]
But since area is always positive taking modulus of area,we have
Area of $\Delta $ VPQ
\[=\left| \dfrac{-2\sqrt{6}\left( \sqrt{3}+\sqrt{2} \right)}{2} \right|=\dfrac{2\sqrt{6}\left( \sqrt{3}+\sqrt{2} \right)}{2}\]
Now, ar $\Delta $ PQT: ar $\Delta $ VPQ
$\begin{align}
& =\dfrac{\text{area of }\Delta \text{PQT}}{\text{area of }\Delta \text{VPQ}} \\
& =\dfrac{\dfrac{{{\left( \sqrt{3}+\sqrt{2} \right)}^{3}}}{2}}{\dfrac{2\sqrt{6}\left( \sqrt{3}+\sqrt{2} \right)}{2}} \\
& =\dfrac{{{\left( \sqrt{3}+\sqrt{2} \right)}^{2}}}{2\sqrt{6}} \\
& =\dfrac{3+2+2\sqrt{6}}{2\sqrt{6}} \\
& =\dfrac{5}{2\sqrt{6}}+1=\dfrac{5}{2\sqrt{6}}\times \dfrac{\sqrt{6}}{\sqrt{6}}+1=\dfrac{5\sqrt{6}}{12}+1 \\
\end{align}$
$\therefore $ ar $\Delta $ PQT: ar $\Delta $ VPQ = $5\sqrt{6}+12:12$
Note:
Here in this problem, while calculating the area of $\Delta $ PQT , direct expansion of the determinant becomes complex, so in order to avoid this try to use the property of determinant as used above in the solution to make calculations easier.
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|$. And then we will find the area of $\Delta $ VPQ using same determinant formula, where V is vertex of parabola. After that we will find the ratio of their areas and get the desired result.
Complete step by step answer:
The equation of given parabola is ${{y}^{2}}=4x$
Generally, equation of tangent to a parabola ${{y}^{2}}=4ax$ at $({{x}_{1}},{{y}_{1}})$ is given by $y{{y}_{1}}-2a(x+{{x}_{1}})=0$ , so the equation of tangent to the parabola at point P (3,2$\sqrt{3}$ ) is given by $y(2\sqrt{3})-2(x+2)=0$ i.e. \[\sqrt{3}y-x-3=0\] .........(i)
and the equation of tangent to the parabola at Q (2, -2$\sqrt{2}$ ) is given by $y(-2\sqrt{2})-2(x+2)=0$ i.e. $\sqrt{2}y+x+2=0$ ...........(ii)
Adding equations (i) and (ii), we get
$\begin{align}
& y(\sqrt{2}+\sqrt{3})-1=0 \\
& \Rightarrow y=\dfrac{1}{\sqrt{2}+\sqrt{3}} \\
& \Rightarrow y=\dfrac{1}{\sqrt{2}+\sqrt{3}}\times \dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}} \\
& \Rightarrow y=\sqrt{2}-\sqrt{3} \\
\end{align}$
Putting ,the value of y in equation (i), we get
$\begin{align}
& \sqrt{3}(\sqrt{3}-\sqrt{2})-x-3=0 \\
& \Rightarrow x=-\sqrt{6} \\
\end{align}$
Therefore coordinate of T is $(-\sqrt{6},\sqrt{3}-\sqrt{2})$ .
Now, we have, P (3,2$\sqrt{3}$ ), Q (2, -2$\sqrt{2}$ ), T$(-\sqrt{6},\sqrt{3}-\sqrt{2})$,
$\therefore $ Area of $\Delta $ PQT =
$\dfrac{1}{2}\left| \begin{matrix}
3 & 2\sqrt{3} & 1 \\
2 & -2\sqrt{2} & 1 \\
-\sqrt{6} & \sqrt{3}-\sqrt{2} & 1 \\
\end{matrix} \right|$
Applying row transformations on ${{R}_{1}}\text{ and }{{R}_{2}}$ that is ${{R}_{1}}\to {{R}_{1}}-{{R}_{3}}\text{ and }{{R}_{2}}\to {{R}_{2}}-{{R}_{3}}$ , we have
Area of $\Delta $ PQT =
$\dfrac{1}{2}\left| \begin{matrix}
3+\sqrt{6} & \sqrt{3}+\sqrt{2} & 0 \\
2+\sqrt{6} & -\sqrt{3}-\sqrt{2} & 0 \\
-\sqrt{6} & \sqrt{3}-\sqrt{2} & 1 \\
\end{matrix} \right|$
Expanding the determinant along ${{C}_{3}}$ , we have
Area of $\Delta $ PQT
$\begin{align}
& =\dfrac{1}{2}\left[ -\sqrt{3}\left( \sqrt{3}+\sqrt{2} \right)\left( \sqrt{3}+\sqrt{2} \right)-\sqrt{2}\left( \sqrt{3}+\sqrt{2} \right)\left( \sqrt{3}+\sqrt{2} \right) \right] \\
& =\dfrac{1}{2}\left[ -{{\left( \sqrt{3}+\sqrt{2} \right)}^{2}}\left( \sqrt{3}+\sqrt{2} \right) \right] \\
& ={{\dfrac{-\left( \sqrt{3}+\sqrt{2} \right)}{2}}^{3}} \\
\end{align}$
But since area is always positive, so taking modulus of area, we have
$\text{Area of }\Delta \text{PQT}=\left| \dfrac{-{{\left( \sqrt{3}+\sqrt{2} \right)}^{3}}}{2} \right|=\dfrac{{{\left( \sqrt{3}+\sqrt{2} \right)}^{3}}}{2}$
Similarly, we have P (3,2$\sqrt{3}$ ), Q (2, -2$\sqrt{2}$ ), V (0,0) ,
$\therefore $ Area of $\Delta $ VPQ $=\dfrac{1}{2}\left| \begin{matrix}
0 & 0 & 1 \\
2 & 2\sqrt{3} & 1 \\
2 & -2\sqrt{2} & 1 \\
\end{matrix} \right|$
Expanding the determinant along ${{R}_{\,1}}$ , we have
Area of $\Delta $ VPQ
\[\begin{align}
& =\dfrac{1}{2}\left[ 1\left( -6\sqrt{2}-4\sqrt{3} \right) \right] \\
& =\dfrac{1}{2}\left[ -2\sqrt{6}\left( \sqrt{3}+\sqrt{2} \right) \right] \\
& =\dfrac{-2\sqrt{6}\left( \sqrt{3}+\sqrt{2} \right)}{2} \\
\end{align}\]
But since area is always positive taking modulus of area,we have
Area of $\Delta $ VPQ
\[=\left| \dfrac{-2\sqrt{6}\left( \sqrt{3}+\sqrt{2} \right)}{2} \right|=\dfrac{2\sqrt{6}\left( \sqrt{3}+\sqrt{2} \right)}{2}\]
Now, ar $\Delta $ PQT: ar $\Delta $ VPQ
$\begin{align}
& =\dfrac{\text{area of }\Delta \text{PQT}}{\text{area of }\Delta \text{VPQ}} \\
& =\dfrac{\dfrac{{{\left( \sqrt{3}+\sqrt{2} \right)}^{3}}}{2}}{\dfrac{2\sqrt{6}\left( \sqrt{3}+\sqrt{2} \right)}{2}} \\
& =\dfrac{{{\left( \sqrt{3}+\sqrt{2} \right)}^{2}}}{2\sqrt{6}} \\
& =\dfrac{3+2+2\sqrt{6}}{2\sqrt{6}} \\
& =\dfrac{5}{2\sqrt{6}}+1=\dfrac{5}{2\sqrt{6}}\times \dfrac{\sqrt{6}}{\sqrt{6}}+1=\dfrac{5\sqrt{6}}{12}+1 \\
\end{align}$
$\therefore $ ar $\Delta $ PQT: ar $\Delta $ VPQ = $5\sqrt{6}+12:12$
Note:
Here in this problem, while calculating the area of $\Delta $ PQT , direct expansion of the determinant becomes complex, so in order to avoid this try to use the property of determinant as used above in the solution to make calculations easier.
Recently Updated Pages
In the given figure PQ is parallel to MN If dfracKPPMdfrac413and class 10 maths CBSE

Write the chemical formula of washing soda How is it class 10 chemistry CBSE

Like poles of a magnet A Attract each other B Repel class 10 physics CBSE

The numerical ratio of displacement to distance for class 10 physics CBSE

Which of the following parts of plants in garlic and class 10 biology CBSE

Identify the feminine form of the noun horse A She class 10 english CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

