
If the sum to infinite of the series $1 + 4x + 7{x^2} + 10{x^3} + ......$ is $\dfrac{{35}}{{16}}$ , then find x.
(Note:$\left| x \right| < 1$ )
A.$\dfrac{1}{5}$
B.$ - \dfrac{1}{5}$
C.$\dfrac{1}{4}$
D.$\dfrac{1}{3}$
Answer
574.2k+ views
Hint: First multiply x in the given equation and subtract the obtained equation from the given equation. On solving the series will be in G.P. so use the formula of infinite G.P. series-
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}}$ where a =first term and r is common ratio and r<$1$. Then substitute the given value in the equation and solve for x.
Complete step-by-step answer:
Given that the sum of infinite series$1 + 4x + 7{x^2} + 10{x^3} + ......$ ${S_\infty }$ =$\dfrac{{35}}{{16}}$
We have to find the value of x.
Let us assume,
$ \Rightarrow {S_\infty } = 1 + 4x + 7{x^2} + 10{x^3} + ......$ -- (i)
Now on multiplying x both sides in eq. (i) we get,
$ \Rightarrow x{S_\infty } = x\left( {1 + 4{x^{}} + 7{x^2} + 10{x^3} + ......} \right)$
On multiplication we get,
$ \Rightarrow x{S_\infty } = x + 4{x^2} + 7{x^3} + 10{x^4} + ......$ -- (ii)
Now on subtracting eq. (ii) from eq. (i), we get
$ \Rightarrow {S_\infty } - x{S_\infty } = \left( {1 + 4x + 7{x^2} + 10{x^3} + ......} \right) - \left( {x + 4{x^2} + 7{x^3} + 10{x^4} + ......} \right)$
Now taking ${S_\infty }$ common, we get,
$ \Rightarrow \left( {1 - x} \right){S_\infty } = \left( {1 + 4x + 7{x^2} + 10{x^3} + ......} \right) - \left( {x + 4{x^2} + 7{x^3} + 10{x^4} + ......} \right)$ -- (iii)
On solving the RHS of the equation we get,
$ \Rightarrow \left( {1 + \left( {4x - x} \right) + \left( {7{x^2} - 4{x^2}} \right) + \left( {10{x^3} - 7{x^3}} \right) + ......} \right)$ {On taking the common terms together}
On simplifying we get,
$ \Rightarrow \left( {1 + 3x + 3{x^2} + 3{x^3} + ......} \right)$
In this series we see on observing that the first term ’a’ is$3x$ and the common ratio r=x. So this series is in geometric progression and it is an infinite series so using the formula for the sum of infinite G.P. series-
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}}$ where r<$1$
Now putting the given values we get,
$ \Rightarrow 1 + \dfrac{{3x}}{{1 - x}}$ for $\left| x \right| < 1$
On substituting this value in the equation (iii), we get,
\[\; \Rightarrow \left( {1 - x} \right){S_\infty } = 1 + \dfrac{{3x}}{{1 - x}}\] for $\left| x \right| < 1$
On taking LCM on the right side we get,
\[\; \Rightarrow \left( {1 - x} \right){S_\infty } = \dfrac{{1 - x + 3x}}{{1 - x}} = \dfrac{{1 + 2x}}{{1 - x}}\] for $\left| x \right| < 1$
We know that ${S_\infty }$ =$\dfrac{{35}}{{16}}$ then on substituting this value in the above equation we get,
$ \Rightarrow \left( {1 - x} \right)\dfrac{{35}}{{16}} = \dfrac{{1 + 2x}}{{1 - x}}$
On cross multiplication we get,
$ \Rightarrow 35{\left( {1 - x} \right)^2} = 16\left( {1 + 2x} \right)$
We know that ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$ .
On using this formula we get,
$ \Rightarrow 35\left( {1 + {x^2} - 2x} \right) = 16 + 32x$
On simplifying we obtain a quadratic equation,
$ \Rightarrow 35{x^2} - 102x + 19 = 0$
On factoring we get,
$ \Rightarrow \left( {7x - 19} \right)\left( {5x - 1} \right) = 0$
On equating the multiplication terms to zero we get,
$ \Rightarrow \left( {7x - 19} \right) = 0{\text{ or }}\left( {5x - 1} \right) = 0$
$ \Rightarrow x = \dfrac{{19}}{7}{\text{Or x = }}\dfrac{1}{5}$
Here given that$\left| x \right| < 1$hence$x = \dfrac{{19}}{7}$ is not possible.
Hence the correct answer is $x = \dfrac{1}{5}$ which is option D.
Note: Here the series is infinite hence the formula of infinite G.P. is used. Don’t confuse its formula with the formula of finite G.P. series which is given as-
$ \Rightarrow S = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}$ where a = first term, r= common ratio and n= number of terms.
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}}$ where a =first term and r is common ratio and r<$1$. Then substitute the given value in the equation and solve for x.
Complete step-by-step answer:
Given that the sum of infinite series$1 + 4x + 7{x^2} + 10{x^3} + ......$ ${S_\infty }$ =$\dfrac{{35}}{{16}}$
We have to find the value of x.
Let us assume,
$ \Rightarrow {S_\infty } = 1 + 4x + 7{x^2} + 10{x^3} + ......$ -- (i)
Now on multiplying x both sides in eq. (i) we get,
$ \Rightarrow x{S_\infty } = x\left( {1 + 4{x^{}} + 7{x^2} + 10{x^3} + ......} \right)$
On multiplication we get,
$ \Rightarrow x{S_\infty } = x + 4{x^2} + 7{x^3} + 10{x^4} + ......$ -- (ii)
Now on subtracting eq. (ii) from eq. (i), we get
$ \Rightarrow {S_\infty } - x{S_\infty } = \left( {1 + 4x + 7{x^2} + 10{x^3} + ......} \right) - \left( {x + 4{x^2} + 7{x^3} + 10{x^4} + ......} \right)$
Now taking ${S_\infty }$ common, we get,
$ \Rightarrow \left( {1 - x} \right){S_\infty } = \left( {1 + 4x + 7{x^2} + 10{x^3} + ......} \right) - \left( {x + 4{x^2} + 7{x^3} + 10{x^4} + ......} \right)$ -- (iii)
On solving the RHS of the equation we get,
$ \Rightarrow \left( {1 + \left( {4x - x} \right) + \left( {7{x^2} - 4{x^2}} \right) + \left( {10{x^3} - 7{x^3}} \right) + ......} \right)$ {On taking the common terms together}
On simplifying we get,
$ \Rightarrow \left( {1 + 3x + 3{x^2} + 3{x^3} + ......} \right)$
In this series we see on observing that the first term ’a’ is$3x$ and the common ratio r=x. So this series is in geometric progression and it is an infinite series so using the formula for the sum of infinite G.P. series-
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}}$ where r<$1$
Now putting the given values we get,
$ \Rightarrow 1 + \dfrac{{3x}}{{1 - x}}$ for $\left| x \right| < 1$
On substituting this value in the equation (iii), we get,
\[\; \Rightarrow \left( {1 - x} \right){S_\infty } = 1 + \dfrac{{3x}}{{1 - x}}\] for $\left| x \right| < 1$
On taking LCM on the right side we get,
\[\; \Rightarrow \left( {1 - x} \right){S_\infty } = \dfrac{{1 - x + 3x}}{{1 - x}} = \dfrac{{1 + 2x}}{{1 - x}}\] for $\left| x \right| < 1$
We know that ${S_\infty }$ =$\dfrac{{35}}{{16}}$ then on substituting this value in the above equation we get,
$ \Rightarrow \left( {1 - x} \right)\dfrac{{35}}{{16}} = \dfrac{{1 + 2x}}{{1 - x}}$
On cross multiplication we get,
$ \Rightarrow 35{\left( {1 - x} \right)^2} = 16\left( {1 + 2x} \right)$
We know that ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$ .
On using this formula we get,
$ \Rightarrow 35\left( {1 + {x^2} - 2x} \right) = 16 + 32x$
On simplifying we obtain a quadratic equation,
$ \Rightarrow 35{x^2} - 102x + 19 = 0$
On factoring we get,
$ \Rightarrow \left( {7x - 19} \right)\left( {5x - 1} \right) = 0$
On equating the multiplication terms to zero we get,
$ \Rightarrow \left( {7x - 19} \right) = 0{\text{ or }}\left( {5x - 1} \right) = 0$
$ \Rightarrow x = \dfrac{{19}}{7}{\text{Or x = }}\dfrac{1}{5}$
Here given that$\left| x \right| < 1$hence$x = \dfrac{{19}}{7}$ is not possible.
Hence the correct answer is $x = \dfrac{1}{5}$ which is option D.
Note: Here the series is infinite hence the formula of infinite G.P. is used. Don’t confuse its formula with the formula of finite G.P. series which is given as-
$ \Rightarrow S = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}$ where a = first term, r= common ratio and n= number of terms.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

