
If the sum of the roots of the quadratic equation \[a{{x}^{2}}+bx+c=0\] is equal to the sum of the square of their reciprocals, then prove that \[2{{a}^{2}}c={{c}^{2}}b+{{b}^{2}}a\].
Answer
595.2k+ views
Hint: Take the roots as P and Q. Thus find the sum of roots (P+Q) and product of roots (PQ) from the quadratic equation. Then from the question find the relation connecting P and Q. Then substitute the value of (P+Q) and (PQ) and prove the given expression.
Complete step-by-step answer:
Given to us a quadratic equation,
\[a{{x}^{2}}+bx+c=0\text{ }\to (1)\]
A quadratic polynomial can be also written as,
\[{{x}^{2}}-\left( sum\text{ }of\text{ }roots \right)x+\left( product\text{ }of\text{ }roots \right)=0\]
Let us consider the two roots of the quadratic equation as P and Q.
Now let us find the sum and product of roots. From (1)
\[sum\text{ }of\text{ }roots=P+Q=\dfrac{-\text{ }coefficient\text{ }of\text{ }x}{coefficient\text{ }of\text{ }{{x}^{2}}}\]
\[\therefore P+Q=\dfrac{-b}{a}\]
\[Similarly\text{ }product\text{ }of\text{ }roots=PQ=\dfrac{\text{constant term}}{coefficient\text{ }of\text{ }{{x}^{2}}}\]
\[\therefore PQ=\dfrac{c}{a}\]
Hence we got the sum of the roots as \[P+Q=\dfrac{-b}{a}\].
Thus product of the roots are \[PQ=\dfrac{c}{a}\].
Now according to the question, the sum of roots of the quadratic equation is equal to the sum of the square of their reciprocals.
i.e. \[P+Q={{\left( \dfrac{1}{P} \right)}^{2}}+{{\left( \dfrac{1}{Q} \right)}^{2}}\]
Now let us simplify this further,
\[\begin{align}
& P+Q=\dfrac{1}{{{P}^{2}}}+\dfrac{1}{{{Q}^{2}}} \\
& P+Q=\dfrac{{{P}^{2}}+{{Q}^{2}}}{{{P}^{2}}{{Q}^{2}}} \\
& P+Q=\dfrac{{{P}^{2}}+{{Q}^{2}}}{{{\left( PQ \right)}^{2}}} \\
\end{align}\]
We can write \[{{P}^{2}}+{{Q}^{2}}\] as \[{{\left( P+Q \right)}^{2}}-2PQ\].
I.e. we know \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\].
\[\therefore {{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab,\] Now apply this in the above expression.
\[P+Q=\dfrac{{{\left( P+Q \right)}^{2}}-2PQ}{{{\left( PQ \right)}^{2}}}\]
Apply cross multiplication property,
\[{{\left( PQ \right)}^{2}}\left( P+Q \right)={{\left( P+Q \right)}^{2}}-2PQ\]
Now put \[P+Q=\dfrac{-b}{a},\]and \[PQ=\dfrac{c}{a}\]
\[{{\left( \dfrac{c}{a} \right)}^{2}}\left( -\dfrac{b}{a} \right)={{\left( -\dfrac{b}{a} \right)}^{2}}-\left( \dfrac{2\times c}{a} \right)\]
Now simplify the above expression
\[\begin{align}
& -\dfrac{b{{c}^{2}}}{{{a}^{2}}}=\dfrac{{{b}^{2}}}{{{a}^{2}}}-\dfrac{2c}{a} \\
& \dfrac{2c}{a}=\dfrac{{{b}^{2}}}{{{a}^{2}}}+\dfrac{b{{c}^{2}}}{{{a}^{2}}} \\
& \dfrac{2c}{a}=\dfrac{b}{{{a}^{2}}}\left[ b+\dfrac{{{c}^{2}}}{{{a}^{2}}} \right] \\
& 2c=\dfrac{a\times b}{{{a}^{2}}}\left[ b+\dfrac{{{c}^{2}}}{{{a}^{2}}} \right]=\dfrac{b}{a}\left[ b+\dfrac{{{c}^{2}}}{{{a}^{2}}} \right] \\
& 2ca=b\left[ b+\dfrac{{{c}^{2}}}{{{a}^{2}}} \right],\text{ let us simplify this further}\text{.} \\
& 2ca=\dfrac{b\left[ ab+{{c}^{2}} \right]}{a} \\
& 2c{{a}^{2}}=a{{b}^{2}}+b{{c}^{2}} \\
\end{align}\]
Hence we proved that \[2{{a}^{2}}c={{c}^{2}}b+{{b}^{2}}a\].
\[\therefore \] The sum of the roots of the quadratic equation is equal to the sum of the square of the reciprocal and we product \[2{{a}^{2}}c={{c}^{2}}b+{{b}^{2}}a\].
Note: We know that the roots of a quadratic equation can also be found as
\[P=\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a}\text{ }Q=\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a}\]
\[\therefore P+Q=\dfrac{-b+\sqrt{{{b}^{2}}-4ac}-b-\sqrt{{{b}^{2}}-4ac}}{2a}=\dfrac{-2b}{2a}=\dfrac{-b}{a}.\]
\[PQ=\dfrac{\left( -b+\sqrt{{{b}^{2}}-4ac} \right)\left( -b-\sqrt{{{b}^{2}}-4ac} \right)}{4{{a}^{2}}}=\dfrac{{{\left( -b \right)}^{2}}-{{\left( \sqrt{{{b}^{2}}-4ac} \right)}^{2}}}{4{{a}^{2}}}=\dfrac{{{b}^{2}}-{{b}^{2}}+4ac}{4{{a}^{2}}}=\dfrac{c}{a}\].But it is difficult and lengthy process so use direct formula of finding sum and product of roots.
Complete step-by-step answer:
Given to us a quadratic equation,
\[a{{x}^{2}}+bx+c=0\text{ }\to (1)\]
A quadratic polynomial can be also written as,
\[{{x}^{2}}-\left( sum\text{ }of\text{ }roots \right)x+\left( product\text{ }of\text{ }roots \right)=0\]
Let us consider the two roots of the quadratic equation as P and Q.
Now let us find the sum and product of roots. From (1)
\[sum\text{ }of\text{ }roots=P+Q=\dfrac{-\text{ }coefficient\text{ }of\text{ }x}{coefficient\text{ }of\text{ }{{x}^{2}}}\]
\[\therefore P+Q=\dfrac{-b}{a}\]
\[Similarly\text{ }product\text{ }of\text{ }roots=PQ=\dfrac{\text{constant term}}{coefficient\text{ }of\text{ }{{x}^{2}}}\]
\[\therefore PQ=\dfrac{c}{a}\]
Hence we got the sum of the roots as \[P+Q=\dfrac{-b}{a}\].
Thus product of the roots are \[PQ=\dfrac{c}{a}\].
Now according to the question, the sum of roots of the quadratic equation is equal to the sum of the square of their reciprocals.
i.e. \[P+Q={{\left( \dfrac{1}{P} \right)}^{2}}+{{\left( \dfrac{1}{Q} \right)}^{2}}\]
Now let us simplify this further,
\[\begin{align}
& P+Q=\dfrac{1}{{{P}^{2}}}+\dfrac{1}{{{Q}^{2}}} \\
& P+Q=\dfrac{{{P}^{2}}+{{Q}^{2}}}{{{P}^{2}}{{Q}^{2}}} \\
& P+Q=\dfrac{{{P}^{2}}+{{Q}^{2}}}{{{\left( PQ \right)}^{2}}} \\
\end{align}\]
We can write \[{{P}^{2}}+{{Q}^{2}}\] as \[{{\left( P+Q \right)}^{2}}-2PQ\].
I.e. we know \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\].
\[\therefore {{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab,\] Now apply this in the above expression.
\[P+Q=\dfrac{{{\left( P+Q \right)}^{2}}-2PQ}{{{\left( PQ \right)}^{2}}}\]
Apply cross multiplication property,
\[{{\left( PQ \right)}^{2}}\left( P+Q \right)={{\left( P+Q \right)}^{2}}-2PQ\]
Now put \[P+Q=\dfrac{-b}{a},\]and \[PQ=\dfrac{c}{a}\]
\[{{\left( \dfrac{c}{a} \right)}^{2}}\left( -\dfrac{b}{a} \right)={{\left( -\dfrac{b}{a} \right)}^{2}}-\left( \dfrac{2\times c}{a} \right)\]
Now simplify the above expression
\[\begin{align}
& -\dfrac{b{{c}^{2}}}{{{a}^{2}}}=\dfrac{{{b}^{2}}}{{{a}^{2}}}-\dfrac{2c}{a} \\
& \dfrac{2c}{a}=\dfrac{{{b}^{2}}}{{{a}^{2}}}+\dfrac{b{{c}^{2}}}{{{a}^{2}}} \\
& \dfrac{2c}{a}=\dfrac{b}{{{a}^{2}}}\left[ b+\dfrac{{{c}^{2}}}{{{a}^{2}}} \right] \\
& 2c=\dfrac{a\times b}{{{a}^{2}}}\left[ b+\dfrac{{{c}^{2}}}{{{a}^{2}}} \right]=\dfrac{b}{a}\left[ b+\dfrac{{{c}^{2}}}{{{a}^{2}}} \right] \\
& 2ca=b\left[ b+\dfrac{{{c}^{2}}}{{{a}^{2}}} \right],\text{ let us simplify this further}\text{.} \\
& 2ca=\dfrac{b\left[ ab+{{c}^{2}} \right]}{a} \\
& 2c{{a}^{2}}=a{{b}^{2}}+b{{c}^{2}} \\
\end{align}\]
Hence we proved that \[2{{a}^{2}}c={{c}^{2}}b+{{b}^{2}}a\].
\[\therefore \] The sum of the roots of the quadratic equation is equal to the sum of the square of the reciprocal and we product \[2{{a}^{2}}c={{c}^{2}}b+{{b}^{2}}a\].
Note: We know that the roots of a quadratic equation can also be found as
\[P=\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a}\text{ }Q=\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a}\]
\[\therefore P+Q=\dfrac{-b+\sqrt{{{b}^{2}}-4ac}-b-\sqrt{{{b}^{2}}-4ac}}{2a}=\dfrac{-2b}{2a}=\dfrac{-b}{a}.\]
\[PQ=\dfrac{\left( -b+\sqrt{{{b}^{2}}-4ac} \right)\left( -b-\sqrt{{{b}^{2}}-4ac} \right)}{4{{a}^{2}}}=\dfrac{{{\left( -b \right)}^{2}}-{{\left( \sqrt{{{b}^{2}}-4ac} \right)}^{2}}}{4{{a}^{2}}}=\dfrac{{{b}^{2}}-{{b}^{2}}+4ac}{4{{a}^{2}}}=\dfrac{c}{a}\].But it is difficult and lengthy process so use direct formula of finding sum and product of roots.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

