If the sum of the first $14$ terms of $AP$ is $1050$ and its first term is $10$, find the $20{\text{th}}$ term.
Answer
Verified
459.9k+ views
Hint: Here we will simply apply the formula of the sum of the $n$ terms of $AP$ which is the Arithmetic progression and get the value of the common difference by this formula. Once we get the common difference $d$ then we can simply solve for $20{\text{th}}$ term by applying the formula of the $n{\text{th}}$ term of $AP$
Formula Used:
${\text{sum of n terms}}({S_n}) = \dfrac{n}{2}(2a + (n - 1)d)$
$n{\text{th term}} = {a_n} = a + (n - 1)d$
Complete step-by-step answer:
AP or arithmetic progression is the sequence in which the different terms have the same common difference or we can say that the consecutive numbers differ by the same number. For example: in the sequence like $2,4,6,8,.......100$ we can see that the difference between each consecutive term is $2$ as $4 - 2 = 6 - 4 = 8 - 6 = 2$
Hence the given sequence is called the Arithmetic progression or AP
Here we are given that the sum of first $14$ terms of$AP$ is $1050$
So we can apply the formula of the sum of the $n$ terms which is
${\text{sum of n terms}}({S_n}) = \dfrac{n}{2}(2a + (n - 1)d)$
We know that
${\text{Sum}} = 1050$
$a = {\text{first term}} = 10$
$n = {\text{number of terms}} = 14$
Here $d = $common difference
So substituting the values in the formula we get:
${\text{sum of n terms}}({S_n}) = \dfrac{n}{2}(2a + (n - 1)d)$
$\Rightarrow$ $1050 = \dfrac{{14}}{2}(2(10) + (14 - 1)d)$
$\Rightarrow$ $1050 = 7(20 + 13d)$
$\Rightarrow$ $\dfrac{{1050}}{7} = 20 + 13d$
$\Rightarrow$ $150 = 20 + 13d$
$\Rightarrow$ $13d = 130$
$\Rightarrow$ $d = 10$
Hence we get that the common difference of the given arithmetic progression is $10$ which means that each term of the given sequence is $10$ more than the previous one.
Now we have got the common difference and now we need to know the $20{\text{th}}$ term of the sequence.
So we apply the formula of the $n{\text{th}}$ term of the AP we get
$n{\text{th term}} = {a_n} = a + (n - 1)d$
Here we should know what the value of each variable in the question is:
${a_n} = n{\text{th term}}$
And $a = $first term$ = 10$
And $n = 20$ as we need to find the $20{\text{th}}$ term
And $d = 10$ as we had calculated earlier
${a_n} = 10 + (20 - 1)10$
$
= 10 + (19)(10) \\
= 10 + 190 \\
= 200 \\
$
Hence we get that the $20{\text{th}}$ term of the sequence which is in AP is $200$.
Note: Here we need to understand the meaning of the Arithmetic progression and we should know what formula should be used in order to calculate the $n{\text{th}}$ term and the sum of the n terms. We should not make calculation mistakes as these types of questions are simple but need just the formula and the values of the parameters used in the formula.
Formula Used:
${\text{sum of n terms}}({S_n}) = \dfrac{n}{2}(2a + (n - 1)d)$
$n{\text{th term}} = {a_n} = a + (n - 1)d$
Complete step-by-step answer:
AP or arithmetic progression is the sequence in which the different terms have the same common difference or we can say that the consecutive numbers differ by the same number. For example: in the sequence like $2,4,6,8,.......100$ we can see that the difference between each consecutive term is $2$ as $4 - 2 = 6 - 4 = 8 - 6 = 2$
Hence the given sequence is called the Arithmetic progression or AP
Here we are given that the sum of first $14$ terms of$AP$ is $1050$
So we can apply the formula of the sum of the $n$ terms which is
${\text{sum of n terms}}({S_n}) = \dfrac{n}{2}(2a + (n - 1)d)$
We know that
${\text{Sum}} = 1050$
$a = {\text{first term}} = 10$
$n = {\text{number of terms}} = 14$
Here $d = $common difference
So substituting the values in the formula we get:
${\text{sum of n terms}}({S_n}) = \dfrac{n}{2}(2a + (n - 1)d)$
$\Rightarrow$ $1050 = \dfrac{{14}}{2}(2(10) + (14 - 1)d)$
$\Rightarrow$ $1050 = 7(20 + 13d)$
$\Rightarrow$ $\dfrac{{1050}}{7} = 20 + 13d$
$\Rightarrow$ $150 = 20 + 13d$
$\Rightarrow$ $13d = 130$
$\Rightarrow$ $d = 10$
Hence we get that the common difference of the given arithmetic progression is $10$ which means that each term of the given sequence is $10$ more than the previous one.
Now we have got the common difference and now we need to know the $20{\text{th}}$ term of the sequence.
So we apply the formula of the $n{\text{th}}$ term of the AP we get
$n{\text{th term}} = {a_n} = a + (n - 1)d$
Here we should know what the value of each variable in the question is:
${a_n} = n{\text{th term}}$
And $a = $first term$ = 10$
And $n = 20$ as we need to find the $20{\text{th}}$ term
And $d = 10$ as we had calculated earlier
${a_n} = 10 + (20 - 1)10$
$
= 10 + (19)(10) \\
= 10 + 190 \\
= 200 \\
$
Hence we get that the $20{\text{th}}$ term of the sequence which is in AP is $200$.
Note: Here we need to understand the meaning of the Arithmetic progression and we should know what formula should be used in order to calculate the $n{\text{th}}$ term and the sum of the n terms. We should not make calculation mistakes as these types of questions are simple but need just the formula and the values of the parameters used in the formula.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE